志津見ダムにおける施工時の生態系保全対策

1. はじめに

志津見ダムは島根県飯石郡飯南町に建設中の重力式コンクリートダムで、通年施工でコンクリート打設を行った。 ダム諸元を表-1に示す。施工にあたり、当ダムサイト右岸頂部にはクマタカの飛来が確認されていたため、生態系

入札時に技術提案し、実施した騒音低減対策とそ の効果について報告する。

保全に関しての対策が必要であった。本報文では、

2. 騒音低減対策

志津見ダムにおける各設備の想定騒音は表 - 2に示す値である。ダム工事中に特に大きな騒音が発生する、骨材製造設備、コンクリート製造設備等を主眼においた対策を計画し、L_{A5}の目標値を 60dB とした。現場の配置図を図-1に示す。

	ダム	貯水地		
位置	右岸:島根県飯石郡飯南町角井地先	集水面積	213.8km2	
型式	重力式コンクリートダム	湛水面積	2.3km2	
堤 高	85.5m	常時満水位	EL 245.7m	
堤頂長	266.0m	サーチャージ水位	EL 276.2m	
堤体積	約 416,000m3	最低水位	EL 232.3m	
越流頂	EL 276.2m	総貯水容量	50,600,000m3	
非越流頂	EL 280.5m	有効貯水容量	46,600,000m3	
計画高水量	1,400m3/sec	治水容量	40,200,000m3	
調節流量	900m3/sec	不特定容量	4,300,000m3	
放流量	500m3/sec	工業用水容量	700,000m3	
以川里		発電	1,700kw	

表一1 志津見ダム諸元

図-1 現場配置図

対策内容

上記目標値を満足するために、以下の対策を提案し、実施した。

- ①バッチャープラントは防音建屋構造(金属サイティング)。
- ②パワーレベルが大きい骨材製造設備(1 次破砕、2・3 次 破砕、骨材洗浄設備、篩分け設備、製砂設備)を防音建 屋で覆う。

建屋外壁:波型カラー鉄板(0.4mm)を用いる。

内装材:グラスウール(t=50mm)を用いる。

③コンクリート打設における、トランスファーカからバケットに コンクリートを荷受する際の騒音を低減するため、バンカ

一線右岸側につい立状の移動式防音壁を設ける。(防音壁材料:鋼製枠、ジスロン防音シート(S-1)使用、高さ3m)

表-2 各設備の想定騒音

	設 備	パワーレヘル (Lawi)	測定点からの距離 (r _i)	等価騒音レベル (L _{seqi})	合成値(L _{aeq}) dB	90%レンジ上端値(L _{A5}) dB
1	バッチャープラント	107	200	53.0	53.0	58.0
2	1次破砕設備	123	570	59.9		73.7
	2・3次破砕設備	123	475	61.5		
	骨材洗浄設備	120	485	58,3	68.7	
	ふるい分け設備	125	480	63.4		
	製砂設備	120	450	58.9		
L (3) 1	コンクリート打設(TC右岸)	108	70	63.1	00.0	60.0
	コンクリート打設(TC左岸)	108	200	54.0	63.6	68.6

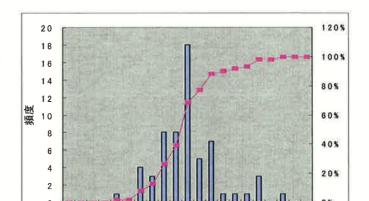
キーワード: コンクリートダム、生態系保全、クマタカ、騒音対策

3. 対策の効果確認方法

効果確認方法

対策による防音効果を確認するために、発生源付近とバッチャープラントから 200m 離れた右岸頂部リムトンネル前で、骨材・コンクリート製造設備の騒音を測定した。

また、各対策(防音建屋、つい立)によるそれぞれの効果を確認するために、①バッチャープラント、②骨材製造設備(各設備)、③バンカー線において、機側と対策設備外で騒音を測定し、透過損失を確認した。


データ抽出方法

騒音レベル記録紙から、5s 毎の騒音レベルを抽出 し、受音点における90%上端値を求めた。

騒音計は、普通騒音計 RION 製 NL-05(JISC1502 適合)を、レベルレコーダは RION 製 LR-07(JISC1512 適合)を用いた。

4. 測定結果

- (a) 防音効果に関しての測定結果を表―3に示す。 騒音測定点における実測値の90%レベル上端値は 57.7dBとなり目標値の60dBを満足することが できた。騒音の最頻値は55dB付近であった。
- (b)透過損失に関して表一4に示す。
- ①バッチャ─プラントおよび③バンカー線防音壁 については、目標値と同等もしくは目標 値以上の透過損失があり、良好な結果が 得られた。
- ②骨材製造設備のうち2次破砕設備での み目標値に達しなかったが、骨材製造設 備全体の透過損失の平均値としては十分

実 測 値 (dB)

60

累積%

図-3 騒音累積度数分布

表-4 騒音の透過損失量

50 51

	設備名	内側 dB	外側 dB	透過損失 dB	平均値 dB	目標値 dB
1	ハ [*] ッチャ―フ [°] ラント	100.5	78.3	22.2	22.2	22.0
2	1次破砕設備	98.8	81.0	17.8		
	2次破砕設備	92.5	76.4	16.1		
	3次破砕設備	95.2	76.2	19.0	19.7	17.5
	骨材洗浄設備	98.3	78.4	19.9		
	ふるい分け設備	102.2	79.7	22.5		
	製砂設備	104.9	82.2	22.7		
3	バンカー線防音壁	108.0	98.0	10.0	10.0	10.0

目標を達成しており、計画通りの騒音低減効果が確認できた。

5. まとめ

本現場では、クマタカの飛来が確認された右岸頂部での 騒音低減する活動を計画、実施した。結果、表-4 に示すと おり、対策による低減効果は①バッチャ-プラント、②骨材製造 設備でそれぞれ約 20dB あった。

ハンカー線では目標値に達しているものの10 dBの低減効果にとどまっており、改善の余地がある。

今後は製造設備の能力の違いや、騒音対策対象との距離 の違いにより、発生源対策の強化や受音側の防音対策も必要 になると考えられる。

写真-1 骨材製造設備全景