鋼繊維補強鉄筋コンクリート梁の曲げ・せん断挙動特性に関する実験的研究

長崎大学大学院	学生会員	\bigcirc	板井	達志	長崎大学	正会員	牧野	高平
長崎大学	正会員		松田	浩	長崎大学	非会員	山下	務

1. はじめに

鋼繊維補強コンクリートは、コンクリートに鋼繊維を混 入することによってじん性を高めた複合材料である.その 力学的特徴として、ひび割れ発生後も引張力を受け持つこ とや、鋼繊維がひび割れ幅を低減することが挙げられる. しかし現段階では、鋼繊維がせん断耐力に及ぼす影響につ いてはまだ十分に明らかにされていない.

そこで、本研究では、鋼繊維補強 RC はりの曲げ・せん 断挙動特性を明らかにすることを目的として、せん断補強 筋のない RC はり、鋼繊維補強 RC はり、せん断補強筋を有 する RC はりを作製し、曲げひび割れや斜めひび割れの発 生・進展過程の可視化と鋼繊維によるせん断補強効果を検 討することを目的として曲げ載荷試験を実施した.試験で は、載荷とともに時々刻々と変化するひび割れ発生から破 壊に至るまでのひび割れの進展状況を計測するため、デジ タル画像相関法を用いた全視野計測を実施した.

2. スパン長 1.6mの鋼繊維補強 RC はりの曲げ試験 2.1 試験概要

スパン長1.6mのRCはり(CB),鋼繊維補強RCはり(FB), せん断補強筋を有するRCはり(SB)を作製し,せん断スパン 比 a/d を 2.3, 1.5 として曲げ載荷試験を実施した. なお a/d=2.3 の試験体をGroup1, a/d=1.5 の試験体をGroup2 と した. Group1では主鉄筋にD13を使用し,鋼繊維混入率を 1.0%, Group2では主鉄筋にD19を使用し,鋼繊維混入率を 1.5%とした.使用したコンクリートの配合表を表-1,強度 を表-2に示す.また,試験体概要を表-3,試験体寸法を 図-1に示す.鋼繊維補強RCはりの曲げ・せん断ひび割れ 発生の可視化の可能性を検討するとともに,鋼繊維の実構 造物大部材に対する補強効果および曲げ・せん断ひび割れ 特性と変形能に及ぼす影響について検討を行った.

		表-1 配合表			単位:kg/m ³		
	セメント	細骨材	粗骨材	水	鋼繊維	AE剤	
0%	377.3	712.0	937.7	170.7	0.0	3.0	
1.0%	377.3	700.9	923.0	170.7	78.5	3.0	
1.5%	377.3	695.3	915.7	170.7	117.8	3.0	
W/C=45%						=45%	

表─2 材料強度						
	鋼繊維混入率	a / d	圧縮強度	割裂引張強度		
	(%)	a/u	(N/mm^2)	(N/mm^2)		
CB1, SB1	0	2.3	44.6	2.98		
FB1	1.0	2.3	40.3	4.35		
CB2, SB2	0	1.5	43.8	2.93		
FB2	1.5	1.5	38.2	5.03		

		表	-3 試験体概要			
	試験体名	鉄筋径	鋼繊維混入率(%)	せん断補強鉄筋 の有無	a∕ d	
	CB1		0	毎		
Group1	FB1	D13	1.0	耒	2.3	
	SB1		0	有		
	CB2		0	毎		
Group2	FB2	D19	1.5	耒	1.5	
	SB2		0	有		
d=210	a	V	· · · · ·		.0	
	100		1,600	100		
CD ED						

2.2 試験結果

2.3.2 スパン中央のたわみ計測

図-2に各 Group の荷重-たわみ曲線を示す.曲げ破壊し た試験体 Group1 については,鋼繊維を混入したことによっ てFB1 とSB1 は同等の耐力を示した.鋼繊維の混入により, せん断補強筋とほぼ同等の補強効果を示すことを確認した. せん断破壊した試験体 Group2 については,鋼繊維の混入に よる耐力の増加は見られなかった.これは CB2, FB2, SB2 がせん断圧縮破壊したためと考えられる.しかし,軟化域 では CB2 に比べ FB2, SB2 は緩やかに荷重が落ち同じよう な挙動を示していることが確認できる.また,FB2 は載荷 試験中に脆性破壊することなく粘り強い破壊をした.

2.3.1 ひずみ分布の推移

デジタル画像相関法を用いて載荷中の RC はりのひずみ 分布の計測を行った. CB, FB について各 Group の(a)破壊 形態, (b)荷重一変位曲線, (c)最大主ひずみ分布図, Group2 においては(d)ひび割れ箇所のひずみ分布図をそれぞれ図-3, 図-4 に示す. Group1ついては,荷重ステップ①におい て曲げひび割れが発生し,荷重の増加とともに斜めひび割 れへと進展していく様子を可視化することができた. Group2のFB2についてはひずみの集中が斜め方向に発生し, 大きく進展していく様子を確認することができた. FB2で はひび割れ箇所のひずみの進展過程を可視化できた. また, ひび割れ箇所のひずみ計測においてもひずみ値が載荷とと もに局所的に増加していることが確認できる.

キーワード:鋼繊維, せん断ひずみ, ひび割れ, 光学的全視野計測

住所:長崎県長崎市文教町1-14 長崎大学大学院生産科学研究科環境システム工学専攻 電話,FAX:095-819-2590

2.3.3 せん断ひずみ計測

デジタル画像相関法によって得られた Group2 のせん断ひ ずみの推移を比較した. 図-5 にせん断ひずみの計測箇所を, 図-6 にせん断ひずみの計測結果を示す. 計測結果より鋼繊 維の混入によりじん性が向上し, FB2 は CB2, SB2 よりも 粘り強く破壊していることが確認できた.

3. まとめ

- 鋼繊維の混入により RC はりの曲げ耐力の向上が確認 できた.
- デジタル画像相関法を用いて計測範囲全体のひずみ分 布を得ることで、ひび割れの発生・進展過程を可視化 することができた。
- ・ スパン長 1.6m の RC はりにおいて、鋼繊維の混入により脆性的な破壊の防止、じん性の向上を確認できた.

参考文献

- ・ 土木学会:鋼繊維補強鉄筋コンクリート柱部材の設計 指針(案),コンクリートライブラリー97,1999
- Nyomboi, T. et al. Theoretical prediction of shear strength..., Reports of the Faculty of Engineering, Nagasaki University, Vol.38(71):20-27, 2008.
- せん断補強鉄筋のない鋼繊維補強 RC はりの非線形挙 動特性に関する研究,土木学会学術講演会講演概要集, Vol.63, No.5, pp523-524, 2008

