火災による高温履歴がコンクリート中の PC 鋼材の付着特性に及ぼす影響

大阪工業大学大学院 学生員 〇稲増 克行 大阪工業大学工学部 正会員 三方 康弘 大阪工業大学工学部 正会員 井上 晋

1. 研究目的

プレテンション方式の PC 部材は、付着を介してプレストレスを与えていることから、火害を受けた直後の供用性の判定を迅速に行うためには、高温履歴を受けたコンクリート中の PC 鋼材の付着特性を把握したうえで、残存プレストレスを適切に評価することが必要である。そこで、本研究では火災による高温履歴を受けたコンクリート中の PC 鋼材の付着特性を把握することを目的として実験的検討を行った。

2. 供試体概要

供試体は図-1 に示すように、角柱に PC 鋼より線を埋め込んだものを用いた。実験要因は PC 鋼より線の径 (ϕ 12.7、 ϕ 15.2)、かぶりの大きさ(30mm、50mm、70mm)とした。これらの要因の組合せにより 6 種類の断面(図-1 中の x=72.7、75.2、112.7、115.2、152.7、155.2mm)を決定した。それらに対し、高温履歴の有無により、各要因 9 体ずつ計 108 体の供試体を作製した。これらの詳細を表-1 に示す。なお、コンクリートの設計基準強度は \mathbf{f}'_{ck} =50N/mm² とし、PC 鋼より線の付着長はいずれも 4 ϕ とした。

3. 実験概要

耐火試験は、平成 18 年の守口高架橋の火災事故において、プレテンションPC 桁橋が約 30 分間で 300~600℃ 受熱したことから、最高温度を 700℃に選定し、Euro Code¹⁾で規定されている外部火災曲線(以下 EX 曲線)を用いて、かぶりが異なるシリーズごとに耐火実験炉を使用して行った.なお、供試体は下面のみから熱を受けるようにしている.計測項目は各かぶり位置のコンクリート内部温度、および炉内温度である.高温履歴を与える時間は 30 分とし、炉内温度が常温となるまで一定の間隔で温度を測定した.また、供試体は加熱後付着強度試験を行うため、PC 鋼より線を受熱から守る必要があったことから、鋼材部分をコンクリートで覆い、実験後不要なコンクリートのはつりを行った.

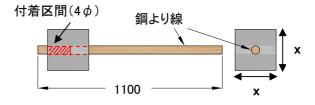


図-1 付着強度試験体(単位:mm)

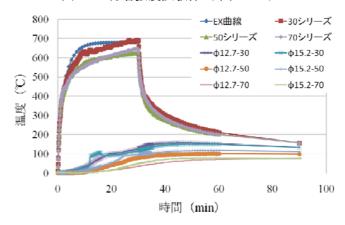


図-2 炉内および熱電対の温度履歴

付着強度試験は、土木学会規準「引抜き試験による 鉄筋とコンクリートの付着強度試験方法」²⁾に準じて行った.計測項目は自由端変位、および初滑時の荷重と 最大荷重である.なお、初滑時とは変位の急激な増加、 および荷重の急激な低下が見られた時点としている.

4. 耐火試験結果

本実験から得られた耐火炉点火後 90 分までの温度履歴を図-2 に示す. 図より, 炉内温度はかぶり 50,70 シリーズにおいて若干低くなっているが, 想定した EX 曲線をほぼ再現できている. また点火直後から炉内温度は急激に上昇したが,各かぶり位置のコンクリート内部温度は徐々に上昇する傾向があり,消火後に最高温度を記録した. 各かぶり位置における最高受熱温度は,かぶりが大きくなるにつれ低下する傾向が伺えた. φ15.2-30 に関して,点火 15 分後に急激な温度上昇が見られたが,これは熱電対埋め込み箇所付近にひび割れが生じ,高温の水蒸気が流れ込んだためと考えられる.

キーワード 高温履歴, PC 鋼材, 付着特性

連絡先 〒535-8585 大阪府大阪市旭区大宮 5-16-1

TEL 06-6954-4109

供試体名	高温履歴 の有無	鋼より線 の径	付着長 (mm)	かぶり (mm)	最高 受熱温度	平均付着応力度		N ===	
						初滑時	最大	必要 定着長	破壊形式
	♥グ有 無	(mm)	(111111)	(111111)	(℃)	(N/mm^2)	(N/mm^2)	足有以	
N- φ 12.7-30	無	12.7	50.8	30	_	3.58	5.77	63 φ	抜出し:9
N- φ 15.2-30	無	15.2	60.8	30	_	4.16	5.47	65 φ	抜出し:9
N- φ 12.7-50	無	12.7	50.8	50	_	4.90	8.10	45 φ	抜出し:9
N- φ 15.2-50	無	15.2	60.8	50	_	4.34	7.35	49 φ	抜出し:9
N- φ 12.7-70	無	12.7	50.8	70	_	5.15	12.87	28ϕ	抜出し:9
N- φ 15.2-70	無	15.2	60.8	70	_	3.96	7.78	46 φ	抜出し:9
F- φ 12.7-30	有	12.7	50.8	30	160	1.46	3.47	105 φ	抜出し:9
F- φ 15.2-30	有	15.2	60.8	30	152	1.52	2.97	120 φ	抜出し:8*1
F- φ 12.7-50	有	12.7	50.8	50	102	2.17	5.81	63 φ	抜出し:9
F- φ 15.2-50	有	15.2	60.8	50	119	2.42	6.07	59 φ	抜出し:9
F- φ 12.7-70	有	12.7	50.8	70	78	2.20	8.68	42 φ	抜出し:9
F- φ 15.2-70	有	15.2	60.8	70	79	1.92	8.03	44 φ	抜出し:8*1

表-1 付着強度試験の詳細、および試験結果

*1 供試体破損のため、1体、付着強度試験が不可能であった.

5. 付着強度試験結果

付着強度試験結果を表-1に示す。表より、本実験での破壊形式は全て抜出し破壊となった.

かぶり30シリーズにおける供試体の平均付着応力度 のグラフを**図**-3 に、代表的な τ -s 関係を**図**-4 に示 す. 高温履歴の有無による比較を行うと、PC 鋼より線 の径やかぶりに関わらず, Fシリーズの方が付着応力度 が低下する傾向が見られた.これは、高温履歴を受け た際にコンクリート内部や表面に微細なひび割れが生 じ、コンクリート強度、およびコンクリートと鋼材に おける粘着作用が低下したことに起因すると考えられ る.このことについては、図-4において初滑時の荷重 が低下している点からも伺える. ここで各シリーズに おける最大付着応力度の減少率としては、かぶり30シ リーズでは φ 12.7 で約 40%, φ 15.2 で約 45%減少し, かぶり 50 シリーズでは 12.7 で約 30%, 615.2 で約 20%減少する傾向が伺えた. かぶり 70 シリーズでは, φ12.7 において 2 体突出して数値が大きい供試体があ り, これを除くと約 25%減少し, φ15.2 では減少傾向 は見られなかった.

また、最大付着応力度から算出される必要定着長を、高温履歴の有無により比較すると、Fシリーズの方が降伏に必要な定着長が長くなる傾向が見られた.このことから、高温履歴を受けたプレテンション方式のPC部材は付着力が低下し、特にかぶりが 30mm 程度の場合はプレストレス低下の可能性が考えられる。今後プレテンション方式のはり部材に高温履歴を与え、その後の残存プレストレスを確認し、付着強度試験との相関関係を確認する予定としている。

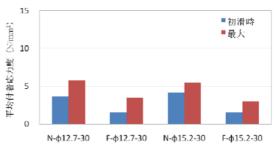
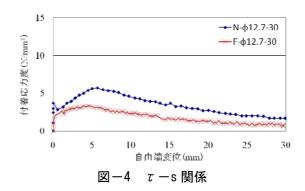



図-3 平均付着応力度(かぶり30シリーズ)

6. まとめ

本実験で EX 曲線に基づいた最高温度 700℃, 30 分間 の高温履歴を与えた場合, コンクリート内部の水分が 熱せられることで水蒸気圧が上昇し, 供試体内部や表面に微細なひび割れが生じ, 付着応力度が低下することが確認された. また, かぶりが大きくなることで鋼材の受熱温度が減少し, それに伴い相対的に付着応力度の低下率も減少する傾向が伺えた.

7. 参考文献

- Euro Code1 : Actions on structures-Part1-2 : General actions-Actions on structures exposed to fire
- 土木学会:コンクリート標準示方書(規準編)
 2007.5