製紙スラッジ灰造粒砂を用いたプレキャスト型枠の開発について(その2)

㈱予州興業 正会員 ○松尾 暁 愛媛大学 正会員 木下 尚樹 愛媛大学 正会員 川口 隆 愛媛大学 正会員 氏家 勳

1. はじめに

愛媛県四国中央市は製紙産業の盛んな地域であるが、大量に発生する産業廃棄物である製紙スラッジ灰(以 下、PS 灰)の処理が問題となっている。筆者らは PS 灰の再資源化を図るため PS 灰造粒砂のコンクリート材 料への適用性について検討してきた¹⁾。本文は、PS 灰造粒砂を用いたプレキャスト型枠の開発について、モ ルタル(以下, PS モルタル)の配合試験結果、強度特性および内部コンクリートの養生効果について検討し た結果を記す。

2. PS モルタルの配合試験および結果

PS モルタルの配合について,表-1に配合条件を示す。 目標フロー値を 200±20mm とし, PS 灰造粒砂を全体積の 50%以上使用することとした。また曲げ強度の向上やひ び割れ防止対策として, 廃ペットボトルから製造された 繊維(PET 繊維)を補強繊維として使用した。水セメン ト比はこれまでの研究 $^{1)}$ により、40%以下とした。

図-1にモルタルフロー試験結果の写真を,表-2に 配合およびモルタルフロー値を示す。No.1, No.2 およ び No. 3 は PS 造粒砂体積比が 60%であり、セメントペ ースト分が少ないためフロー値が小さく, No.3 は骨材 とペースト分が完全に分離している。PS 灰造粒砂体積 比を 50%にした No. 4 および No. 5 については流動性は 良好であった。PS 灰の有効利用促進のためにはなるべ く体積比を大きくしたいが、セメントペースト量とのバ ランスを考慮し適度な流動性を得るには PS 灰造粒砂の 体積比は 50%が適当と考えられる。目標のモルタルフ ロー値の範囲内にある No. 5 の配合を,後の強度試験, 内部コンクリートの養生効果確認実験に採用した。

表一1 配合条件

フロー値	$200\pm20\mathrm{mm}$
PS 灰造粒砂体積比	50%以上
補強繊維	PET 繊維
水セメント比	40%以下

No2

No.3

No 5

No4

図-1 モルタルフロー試験結果写真

表-2 配合およびモルタルフロー値

	PS 灰 造粒砂	水 セメント	単位量(kg/m³)					
番号					PS 灰	混和材料		モルタル
, , ,	体積比	比	水	セメント	造粒砂	高性能 AE	繊維	フロー値
					ZE11247	減水剤	(PET)	
No.	(%)	W/C	W	С	S	A ※ 1	F ※ 2	(mm)
1	60	30	189	629	955	9.4(1.5%)	38.4(3.0%)	115
2	60	30	191	635	965	12.7(2.0%)	25.9(2.0%)	135
3	60	40	219	547	965	10.9(2.0%)	25.9(2.0%)	198
4	50	30	222	794	804	15.9(2.0%)	25.9(2.0%)	235
5	50	25	216	864	804	17.3(2.0%)	25.9(2.0%)	182

※1 ()内はCに対する割合 ※2 ()内は全体積に対する割合

キーワード 製紙スラッジ灰,プレキャスト型枠,造粒砂,断熱性,軽量

連絡先 〒799-0101 愛媛県四国中央市川之江町 2529-34 (株) 予州興業 環境部 TEL0896-58-4002

3. PS モルタルの強度特性

採用した No. 5 の配合で 40×40×160mm の角柱供試体を作製し、曲げ・圧縮試験を行った。材齢 28 日の結果を図ー2に示す。図には砕砂モルタル・繊維なし・ポリプロピレン繊維を用いた場合についても示している。PS 灰造粒砂を用いた供試体は、圧縮・曲げ強度共に砕砂モルタルに対して約 1/2 程度の強度であった。

次に、厚さ 20mm の平板供試体の曲げ強度試験結果を表-3に示す。繊維なしに対して、PP 繊維は同程度だか、PET 繊維は 1N/mm²以上曲げ強度が大きい。これは、繊維長 (PP 繊維:12mm、PET 繊維:30mm) と板厚が関係していると考えられる。PET 繊維は板厚に対して長いため、繊維方向が 2 次元に限定され、曲げ強度に影響したと考えられる。

4. PS モルタルの内部コンクリートの養生効果

PS モルタルの熱伝導率は砕砂モルタルと比較して約 1/3と小さい¹⁾。断熱性により内部コンクリートの温度にどのような影響を及ぼすか検討するため,温度計測を行なった。実験概略図を図-3に示す。500×500×500mmの立方体の1面に木製合板,PSモルタルおよび砕砂モルタルの平板の3種類の型枠を設置し,残る5面は厚さ50mmの断熱材で覆った。内部にコンクリートを打設し,中心部の温度が定常状態となるまで温度を測定した。木製合板は打設3日後に脱枠した。

測定結果を図―4に示す。内部に打設されたコンクリートの水和熱により約20時間後に最高温度に達している。中心部の最高温度はほとんど同じであるが、型枠枠内の温度は木製合板、PSモルタル、砕砂モルタルの順に高く、熱伝導率が小さいことが影響している。温度降下速度は中心部では木製合板、PSモルタル、砕砂モルタルの順に緩やかである。型枠枠内では木製合板の場合、脱枠後に外気温の影響を受け

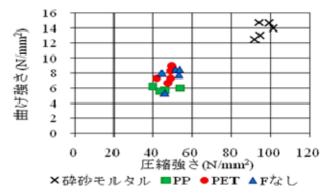
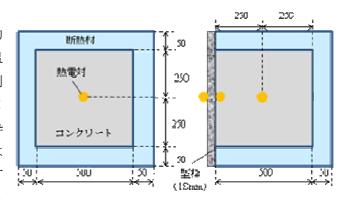



図-2 圧縮強度および曲げ強度

表-3 平板供試体の曲げ試験結果

項目	繊維なし	PP 繊維	PET 繊維
曲げ強度 (N/mm²)	5.30	5.46	6.70

図一3 温度計測概略図

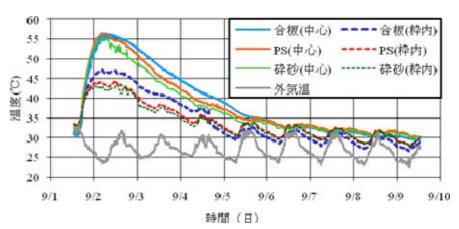


図-4 内部コンクリートの温度測定結果

温度変化が大きくなっている。今回の実験の範囲では、熱伝導率の小さい材料を型枠に用いた場合、最高温度 は高くなり、温度降下速度は緩やかになることが分かった。脱枠の必要が無く、型枠枠内の温度変化が緩やか になる点においてプレキャスト型枠の優位性があると考えている。

5. おわりに

内部コンクリートの養生効果について、圧縮強度等を比較した結果は講演会にて述べる。

参考文献 1)松尾暁,木下尚樹,川口隆,氏家勲,田中基博:製紙スラッジ灰造粒砂を用いたプレキャスト型枠の開発について,平成 21 年度土木学会第 64 回年次学術講演会, pp. 723-724, 2009