鉄筋の腐食による膨張圧が付着性状へ及ぼす影響に関する実験的研究

鉄道総合技術研究所	正会員	大屋戸理明
東海旅客鉄道	正会員	中山 裕司
筑波大学	正会員	八十島 章
筑波大学	正会員	金久保利之

1.はじめに

本報では,鉄筋の腐食がコンクリートとの付着性状 に及ぼす影響を検討することを目的として,腐食させ た RC 部材の引抜試験により腐食鉄筋の基礎的な付着 性状を検討した前報¹⁾に引き続き,腐食に伴う膨張圧 が付着性状へ及ぼす影響について着目し、これを模擬 した実験により検討を行った.

2.実験概要

試験体一覧を表1に,試験体形状を図1に示す.試 験体は幅300mmのコンクリート平板の中心に異形鉄筋 D16(SD390)を1本埋め込んだもので, 付着長は480mm (鉄筋径の 30 倍)とし,荷重端及び自由端には塩ビ管に より 24mm(鉄筋径の 1.5 倍)の絶縁区間を設けた. 腐食 による鉄筋周囲の状態の変化を模擬するため,比較の ための健全なもの数体を除き,作製後に目標質量減少 率を 7.5% 又は 15% として電食により腐食させた.腐食 試験体にはダイヤモンドカッターで切込みを、健全な

かざい		横	拘束	積算	質量
試験体名称 (m	(mm)	J.	応力 電流量		減少率
	(11111)	(N/	/mm²)	(A・hr)	(%)
CF15-A-0.5			0.5		11.8
CF15-A-1			1.0	73.3	12.1
CF15-A-2	24 (1.5)		2.0		10.9
CF15-B-0.5			0.5		19.2
CF15-B-1			1.0	146.6	19.3
CF15-B-2			2.0		20.2
CF25-A-0.5	40 (2.5)		0.5	73.3	9.7
CF25-A-1			1.0		10.3
CF25-A-2			2.0		9.5
CF25-B-0.5			0.5	146.6	16.9
CF25-B-1			1.0		17.0
CF25-B-2			2.0		16.0
CF25-N-0.5			0.5	0	0
CF25-N-1			1.0		(健全)
CF25-N-2			2.0		(健主)
CF35-A-0.5			0.5	73.3	8.9
CF35-A-1	CF35-A-1 CF35-A-2 56 CF35-B-0.5 (3.5)		1.0		7.6
CF35-A-2			2.0		8.0
CF35-B-0.5			0.5		15.3
CF35-B-1		1.0	146.6	14.7	
CF35-B-2			2.0		11.2

表1 試験体一覧

キーワード 鉄筋腐食,付着,横拘束力,腐食ひび割れ

連絡先

〒185-8540 東京都国分寺市光町 2-8-35 鉄道総合技術研究所 TEL042-573-7281

試験体にはスリットを設け, 図中左右のコンクリート ブロックを完全に分離した.これは,横拘束力を鉄筋 のみに作用させることと, 付着性状に対するコンクリ ートの割裂の影響¹⁾を除去することを意図している. 表中の質量減少率は,引抜試験終了後にはつり出した 鉄筋を 10% クエン酸二アンモニウム水溶液に浸漬して 除錆し,試験区間の質量減少量を健全時の質量で除し て求めた値である.使用したコンクリートの圧縮強度 は 24.4N/mm²,割裂強度は 2.89 N/mm²,弾性係数は 24.3 kN/mm², 異形鉄筋 D16 の降伏強度は 442N/mm², 弾性 係数は 190 kN/mm²であった.加力方法を図 2 に示す.

引抜試験では,試験体のかぶりを拘束しないようかぶ りと等しい寸法の孔を設けた加力板の上に試験体を設 置し,鉄筋を単調に引抜力を与えた.横拘束力は6個 のオイルジャッキによりコンクリートプロックに直接 作用させ,加力中は目標値を一定に保つように制御し た.計測項目は主筋引張力,拘束力,荷重端すべり量, 自由端すべり量,荷重端および自由端の横方向変位で ある.荷重端および自由端の横方向変位は,南面およ び北面に2本ずつ計4本取り付けた変位計により計測 した.

3.実験結果

試験体 CF25-N-2, CF35-A-0.5, CF35-A-1, CF35-A-2, CF35-B-2 は鉄筋の降伏で,それ以外の試験体は鉄筋の 引抜けで試験を終了した.図3に最大付着応力 拘束 応力関係,図4に最大付着応力 質量減少率関係,図5 に最大付着応力を健全試験体の結果で基準化した基準 化付着強度 質量減少率関係を示す.なお,鉄筋が降 伏した試験結果は図示していない.図5では,引抜力 により割裂ひび割れが生じる条件下の結果として,前 報の結果¹⁾を併記した.図4および図5では,各々の横 拘束応力ごとに最小二乗法により求めた回帰直線を併 記する.この直線の勾配は,質量減少率の増大に対す る最大付着応力の低下の程度を表している.図3より, 拘束応力の増大に伴う最大付着応力の増大が確認できる.図4より,腐食した場合の最大付着応力は質量減 少率の増加に伴って減少するもののその傾向は緩やか で,一部に健全試験体の最大付着応力を上回る場合が 確認できる.また,図3および図4とも,かぶり径比 の影響は殆どない.図5より,横拘束応力が0.5N/mm² の場合の勾配に比べて1N/mm²や2N/mm²の場合の勾配 が小さい.また,いずれの勾配も前報¹⁾のそれより小さ いことから,膨張圧による横拘束力が作用する場合は, 腐食による最大付着応力の低下は低減されることが分 かる.

4.まとめ

腐食に伴う膨張圧が鉄筋とコンクリートの付着性状 へ及ぼす影響について模擬実験により検討を行った結 果,腐食部材においても横拘束力の増大に伴って最大 付着応力が増加し,質量減少率の増大に対する最大付 着応力の低下の程度は,引抜力により割裂ひび割れが 生じる場合のそれよりも小さくなる傾向が確認された.

謝辞 本研究は,科学研究費補助金基盤研究(C)課題番号 20560457(腐食したコンクリート部材の付着割裂メカニズム の解明)の助成を受けた.

参考文献 1)大屋戸ほか:腐食した鉄筋コンクリート部材の 付着割裂性状に関する引抜試験,土木学会年次学術講演会講 演概要集,部門, pp.485~486,2009.9

