X線撮影を用いた RC 部材内の鉄筋腐食状態の可視化に関する基礎的研究

東北大学大学院	学生会員	○小森谷隆	東京電力(株)		萩原聡子
東北大学大学院	正会員	秋山充良	東北大学大学院	フェロー	鈴木基行
		(独)鉄道建設	・運輸施設整備支援機構	正会員	中嶋啓太

1.はじめに

塩害環境下にある既存の鉄筋コンクリート(RC)構造物では,部材内で生じている鉄筋腐食の状態を精度 良く把握することがその維持管理において重要である.しかし,鉄筋はコンクリート内に存在するため,鉄筋 腐食の生成過程を連続して観察することは極めて困難である.それが原因で,鉄筋腐食が不均一に進展するメ カニズムや,その不均一さ(空間分布)の程度,さらにはそれがコンクリート表面に現れる腐食ひび割れや RC 構造物の構造性能に及ぼす影響などが明らかにされていない.これらの現象を解明することは,RC 構造 物の余寿命評価の高度化につながるものである^{1),2)}

本研究は、コンクリート部材内で生じる鉄筋腐食生成過程の連続的な観察を実施するための予備検討として、 電食にて予め腐食させた鉄筋をコンクリート中に埋め込み、その状態をX線により可視化することを試みる. また、X線撮影画像から推定される鉄筋腐食量と質量測定値を比較することで、その精度などを検証する.

2. X 線撮影装置

本研究で用いた X 線装置の概要を図-1に示す. X 線 管球の最大出力は 225kW である. 既往の研究において, テストピースの内部のひび割れ性状を X 線にて観察し た例は報告されている³⁾. これに対し,本研究で用いる 装置は,比較的規模の大きい RC 部材の撮影が可能な点 に特徴を有する. これは,鉄筋腐食の不均一さが構造性 能に及ぼす影響を観察するためには,ある程度以上の大 きさを持つ RC 部材が必要とされるからである.

X線管球から放射されるX線の物質透過前後の透過強度は式(1)の関係を有している.

$$I = I_0 \exp(-\mu d) \tag{1}$$

ここで、 $L_b \in I$ はそれぞれ透過前と透過後の X 線強度、 μ は透過する物質の透過係数、dは透過する物質の厚さを示す.

透過係数μとは、物質の密度に依存した係数である. RC 部材を X 線撮影した場合,鉄筋の密度は 7.87g/cm³, コンクリートの密度は 2.3~2.4g/cm³であるため、この差 が X 線で撮影した画像(以下, X 線画像)に反映される. 3. 実験概要

3.1 実験条件

実験パラメータは、水セメント比(50%,70%),供試体 形状(円柱,角柱),目標鉄筋質量減少率(1~15%)である. 目標質量減少率が得られるように電食させた鉄筋を予め 作製し,その周りにコンクリートを打設した.円柱供試体 は図-2(a)に示すように、¢100mm×200mm とし、鉄筋は 断面中心に配置した.角柱供試体は図-2(b)に示すように、

連絡先:〒980-8579 宮城県仙台市青葉区荒巻字青葉 6-6-06 TEL:022 (795) 7449 FAX:022 (795) 7448

ンクリートクラックX線線

100mm×100mm×382mm とし,かぶりが 15mm と 43.5mm となるように鉄筋を配置した.なお,鉄筋径は全て D13 で ある.本実験では,鉄筋の様子を立体的に把握するために, 各供試体について鉄筋を中心に 30 度ずつ回転させ,12 方向 から撮影を行った.なお,15 度間隔で撮影することも一部 の供試体で試みたが,後述の鉄筋質量減少率の推定精度は 変わらなかった.

3.2 鉄筋腐食量の算定手順

写真−1 に、コンクリート中にある健全鉄筋と腐食鉄筋 を撮影した例を示す.腐食鉄筋で生じているふしの損失が 確認できる.このX線画像から推定される腐食量の精度を 検証するため、画像を基に質量減少率Δw を算出し、実際 の質量測定結果との比較を行う.

$$\Delta w = \frac{w_0 - w_1}{w_0} \times 100$$
 (2)

ここで、w₀とw₁は健全と腐食した鉄筋の質量を示す.

X線画像より鉄筋質量減少率を算定する手順は,i)X線 画像より鉄筋の抽出,ii)腐食鉄筋断面積の算出,iii)腐食 鉄筋の体積の推定,である.1 供試体につき12枚のX線画 像が得られることから,これより腐食生成物を除く腐食鉄 筋の体積を推定し,式(2)のw₁を得た.

4. 実験結果

X 線画像から得られた鉄筋質量減少率と,実際の質量測 定から得られる鉄筋質量減少率の関係を図-3に示す.水セ メント比やかぶり,および断面形状による精度の偏りは見 られず,概ね,実際の質量測定から得られる質量減少率を 推定出来ている.

誤差を生む原因として, 次の2つが考えられる. (1)鉄筋のみを撮影したX線画像から推定される断面積*A*₁と, 同 じ鉄筋がコンクリート中にある場合を撮影して得られる断面積*A*₂の比(=*A*₁/*A*₂)は0.97程度になる. つまり, 鉄 筋周辺にコンクリートが存在することで腐食鉄筋に残る健全な鉄筋の最外郭の区分が曖昧となり, 誤差を生む. (2) 電食させた鉄筋の表面には, 孔食のようなくぼみが観察される. このくぼみは, X線画像に現れず, くぼみの体積だ け誤差を生む.

5. まとめ

本研究では, RC 部材内の鉄筋の腐食状態を撮影し, X 線撮影画像から鉄筋質量減少率を推定した. コンク リート中に埋設されていることによる影響と,撮影で捉えられない孔食の影響により誤差は生じるが, X 線撮 影画像から推定される鉄筋質量減少率は,質量測定から得られる値に概ね等しいことを確認した.

今後は、乾湿繰返しの作用を受ける RC 部材内の鉄筋の状態を時系列で撮影することで、鉄筋腐食生成過程 や、それが腐食ひび割れなどに及ぼす影響を明らかにする.

参考文献

1) Darmawan, MS., and Stewart, MG: Spatial time-dependent reliability analysis of corroding pretentioned prestressed concrete bridge girders, *Structural Safety*, Vol. 29, pp. 16-31, 2007. 2) Val, DV., and Chernin, L.: Serviceability reliability of reinforced concrete beams with corroded reinforcement, *Journal of Structural Engineering*, Vol. 135, No. 8, pp. 896-905, 2009. 3) 武田三弘, 大塚浩司: X線造影撮影によるコンクリート強度の推定, 土木学会論文集E, Vol. 62, No. 2, pp. 376-384, 2006.