せん断スパン比の小さいフーチングのせん断耐力に関する実験的検討

JR 東日本	正会員	井口	重信
JR 東日本	正会員	小林	将志
JR 東日本	正会員	滝沢	聡

1.はじめに

せん断スパン比の小さいフーチングのせん断耐力 の評価については文献 ¹⁾などがあるが,載荷側とな る柱部分がフーチング全幅に渡って配置されたもの についての知見が多く,フーチング中央のみに柱を 配置した場合の知見は少ない。そこで,このような 場合を対象に模型試験体を製作し静的載荷試験によ りせん断耐力の検討を行ったので,以下に記す。

2.載荷試験の概要

試験体の一般図と配筋図を図-1 に,試験体の諸元 を表 - 1 に示す. なお,表-1 には最大荷重の実験値 についてもあわせて示す。試験体は全て 700mm× 700mm の平面寸法であり,高さを 200mm と 250mm の2水準とした。配筋は全て同じで,引張鉄筋には SD390のD16を 圧縮鉄筋にはSD345のD10を50mm 間隔の格子状に配置した、かぶりは最外縁鉄筋の芯 かぶりで 50mm とした. 杭を模した 100mm の厚鋼 板を支点として圧縮試験機のベース上に4箇所設置 し,その上に試験体を設置した.試験体上面には, 柱を模した 200mm × 200mm の載荷板をスラブ上面 中央に設置して載荷を行った.支点は試験体中央か ら点対照に配置し,支点と載荷板との間の水平距離 をパラメーターとした。なお,以後,支点と載荷板 との水平距離は,載荷板角部と支点前面の最短距離 で表し,これをせん断スパン a_Nとした.

3. 載荷試験の結果

No.4, No.6 試験体の試験終了時の試験体下面の損 傷状況を図-2 に示す。いずれの試験体も,下面の支 点から試験体角部へひび割れが伸びる直前に最大荷 重となり、その後荷重が低下した.試験終了後には、 上面は載荷板が試験体にめり込むような損傷のほか にはひび割れ等はなく,下面は各支点を結ぶ矩形の

キーワード フーチング, せん断耐力, せん断スパン 連絡先

表-1 試験体諸元と最大荷重の実験値

試験体No.				No.2	No.3	No.4	No.5	No.6	
幅×奥行き	mm	700×700							
高さ	h	mm	250			200			
平均有効高さ	d	mm	192 192 192		142	142	142		
せん断スパン	a _v	mm	20.7	84.4	162.1	13.6	63.1	119.7	
せん断スパン比	a_N/d	-	0.11	0.44	0.84	0.10	0.44	0.84	
主鉄筋比	p _c	%	1.48				1.84		
コンクリート圧縮強度	f'_c	N/mm ²	16.3 14.6			26.1		21.3	
引張鉄筋(D16)降伏応力	f_{sy}	N/mm ²	470						
引張鉄筋(D16)降伏ひずみ	ε _{sy}	μ	2492						
最大荷重	P_{exp}	kN	1391	1088	704	1740	1122	801	
換算した最大荷重	P_{exp}'	kN	1579	1236	845	1559	1006	796	

最大荷重の換算はコンクリート強度21N/mm²に換算した値である. なお換算は, P_{exp}'=P_{exp}×(21/f'_c)^{1/2}とした.

図-2 試験体の損傷状況(左:No.4,右:No.6)

〒370-8543 群馬県高崎市栄町6番26号 JR東日本上信越工事事務所 工事管理室 TEL027-324-9369 ひび割れの内側部分が押し抜かれたような損傷状況 であった.最大荷重は表-1のように,せん断スパン 比 a_N/d が小さいほど大きく,また部材高さが大きい ほど大きかった.

4.考察

既往の設計で用いられているフーチングのせん断 耐力の評価式で評価を行った.鉄道構造物の場合, フーチングのせん断耐力については,式(1)に示すデ ィープビームのせん断耐力算定式により評価を行う のが一般的である¹⁾.

$$P_{cal1} = 4 \cdot \frac{0.24 \cdot f'_{c}^{2/3} \cdot (1 + \sqrt{100 p_{t}}) \cdot (1 + 3.33R/d)}{1 + (a_{2}/d)^{2}} b_{e} \cdot d \quad (1)$$

ここに, f'_c : コンクリートの圧縮強度, p_t : 引張鉄筋 比,R:支点の径,d: 有効高さ, b_e : 有効幅(= $0.8a_1+R$), $a_1=a_N+R/2$, $a_2=a_N+R$

式(1)により算出したせん断耐力の計算値 P_{call} と実験 値 P_{exp}の比較を表-2 に示す.せん断スパン比 a_N/d が 0.5 以下では,計算値は実験値の 1.27~1.76 倍に評価 する傾向にあった.これは,式(1)では載荷板端部と 支点前面の最短距離の中点を結ぶ線分での破壊を想 定しているのに対し,載荷試験では載荷板から支点 中心を結ぶ矩形へ押し抜くような破壊形態となって いるのが一因だと思われる(図-3).

そこで,同様な破壊形態を想定しているケーソン 基礎の頂版のせん断耐力算定に用いられている²⁾押 し抜きせん断耐力(式(2))により評価を行った.な お,式(2)中のせん断抵抗有効幅 U には,図-3(b)に 示す載荷板と支点中心を結ぶ四角形の中間距離にあ る仮想破壊線の周長を用いた.

$$P_{cal2} = \frac{0.95\sqrt{f'_{c}} \cdot (100p_{t})^{1/3} \cdot (1000/d)^{1/4}}{1 + (a_{N}/d)^{2}} \cdot U \cdot d \qquad (2)$$

$$P_{cal2}' = P_{cal2} \cdot (1.2 - 0.667a_{N}/d) \qquad (2)'$$

$$\hbar c \hbar U , 1.2 - 0.667a_{N}/d = 1$$

式(2)および式(2)'により算出したせん断耐力の計算 値 P_{cal2} と実験値 P_{exp}の比較を表-3 に示す.せん断ス パン比 a_N/d が 0.5 以下の範囲では,計算値は実験値 の 0.99~1.38 倍となり,比較的よく整合した.

表-2 せん断耐力の計算値 Pcall と実験値の比較

試験体No.			No.1	No.2	No.3	No.4	No.5	No.6	
(a _N /d)		(0.11)	(0.44)	(0.84)	(0.10)	(0.44)	(0.84)		
せん断 耐力	実験値	Pexp	kN	1391	1088	704	1740	1122	801
	計算値	P _{cal1}	kN	886	852	691	986	881	651
実験値 / 計算値		P_{exp}/P_{cal1}	-	1.57	1.28	1.02	1.76	1.27	1.23

図-3 破壊形態の比較

表-3 せん断耐力の計算値 Pcal2 と実験値の比較

試験体No.			No.1	No.2	No.3	No.4	No.5	No.6	
(a _N /d)			(0.11)	(0.44)	(0.84)	(0.10)	(0.44)	(0.84)	
せん断 耐力	実験値	Pexp	kN	1391	1088	704	1740	1122	801
	計算値	P _{cal2}	kN	1218	1095	825	1260	1095	724
実験値	/ 計算値	$P_{exp}\!/P_{cal2}$	-	1.14	0.99	0.85	1.38	1.02	1.11

5.まとめ

せん断スパン比 a_N/d が 0.5 よりも小さいフーチン グの場合,以下のことが判明した.

・今回の試験で行った載荷点や支点の配置状況にお いて,一般的に想定している破壊形態とは異なり, 上部載荷板から下部支点中央を結ぶ矩形へ角錐台形 に押し抜かれるような破壊形態となった.

・ディープビームのせん断耐力の計算値と実験値を
 比較すると,実験値は1.27~1.76倍となった.
 ・ケーソン基礎頂版の設計押し抜きせん断耐力の計
 算値と比較すると,実験値は,0.99~1.38倍となり,
 比較的よく整合した.

参考文献

 1)鈴木ら:杭基礎フーチングのせん断耐力評価,鉄 道総研報告, Vol.18, No.1, 2004.1
 2)谷村ら:せん断スパン比のごく小さい RC 部材のせん断耐力の評価,鉄道総研報告, Vol.14, No.1, 2000.1