RCディープビーム部材を対象としたせん断耐力に関する実験的検討

東日本旅安鉄道株式へ社 TA 7 東 甫

1. はじめに

一般にせん断スパン比(せん断スパンと有効高さの比) の小さい鉄筋コンクリート(以下, RCという)部材はデ ィープビームと呼ばれ、せん断力に対する耐荷機構は、 せん断スパン比が比較的大きい一般的な棒部材と異なる と言われており^{1),2)},既往の研究に基づき,いくつかのせ ん断耐力評価手法(1)~(3)式が提案されている3),4),5).

$$V_{y} = k \cdot V_{c} \tag{1}^{3}$$

$$V_{c} = \frac{0.24 \cdot f'_{c}^{2/3} \left(1 + \sqrt{100 p_{t}}\right) \left(1 + 3.33 r / d\right)}{1 + \left(L_{a} / d\right)^{2}} b_{w} dt$$

$$\mathbf{k} = 1 + 7.4 \sqrt[3]{100 \, p_w} \cdot (L_a/\text{d} - 0.75) \, / \, f'_c^{2/3}$$

 $(2)^{4)}$ $V_{\rm v}' = V_{\rm c} + \phi \cdot V_{\rm s}$

 $\phi = -0.17 + 0.3(L_q/d) + 0.33/p_w \leq 1.0$

 $V_{\rm s} = \{A_{\rm w} \cdot f_{\rm wv} \cdot (\sin\theta_{\rm s} + \cos\theta_{\rm s})/s_{\rm s}\} \cdot z$

 V_v "=min(V_c '+ V_s , V_{wc})

 $V_c = 0.76(a/d)^{-1.166} \cdot \sqrt[3]{f'_c} \cdot \beta_d \cdot \beta_n \cdot b_w \cdot d \cdot \beta_n$

 $V_{wc} = 1.25 \sqrt{f'_c} \cdot b_w \cdot d$

これらの評価手法はせん断補強鉄筋の補強効果に関す る考え方が大きく異なり,試験体寸法程度のせん断耐力 であれば計算値に大きな差異は生じないが、実構造物寸 法では大きく異なる場合がある.

 $(3)^{5}$

そこで、実構造物大の梁部材断面を模擬した試験体に より、水平加力試験を行ったので、その結果について報 告する.

2. 試験体諸元

試験体は、断面寸法を同一とし、配筋、せん断スパン 比を変化させた2体とした.試験体諸元を表-1、試験体 概要(試験体 No.1)を図-1 に示す. ここで示すせん断ス パン a は載荷板下端からフーチング天端までの距離とし ている. 軸方向鉄筋, せん断補強鉄筋の降伏強度ならび にコンクリートの圧縮強度は、材料試験値を示している.

日平旅谷妖追怀氏云钰	正云貝		р Т
日本旅客鉄道株式会社	正会員	築嶋	大輔

3. 実験概要

載荷方法は、試験体柱頭部付近を載荷点として静的な 一方向単調載荷とした. 主な計測項目は、せん断スパン 内のせん断補強鉄筋ひずみ、水平荷重および載荷点変位 とした.また、載荷点から支点を結ぶ対角のエリア(以 下, 圧縮ストラットという) のコンクリート断面内にて, アクリル製の棒に貼り付けたひずみゲージを用い、コン クリート圧縮ひずみを計測した.

4. 実験結果

4. 1 破壊性状

破壊性状は、最大荷重時まで両試験体ともに類似して いた. 試験体 No.1 および No.2 の荷重-載荷点変位関係を は図-2, 図-3 に示す. また, 試験体 No.1 の最大荷重時の ひび割れ状況を写真-1に示す.載荷に伴う破壊過程は, まず引張側基部に曲げひび割れが入り、その後、せん断 スパンの上方に曲げひび割れが発生し、斜めひび割れに 移行する. さらにこれとは別に、載荷点付近から圧縮側 基部を結ぶ対角線(以下,圧縮ラインという)に沿って 斜めひび割れが新たに発生した. 圧縮ライン上の斜めひ び割れが圧縮側基部付近まで到達し、圧縮ストラットに 新たな斜めひび割れが発生するのと同時に圧縮ライン中

	衣 ^一 武梁体韵儿											
No	有効高さ d(mm)	厚さ b _w (mm)	せん断スパン a(mm)	a/d	コンクリート 圧縮強度 f _c '(N/mm ²)	軸方向鉄筋			せん断補強鉄筋			
						呼び名	降伏強度 f _{sy} (N/mm ²)	軸方向鉄筋比 p _c (%)	呼び名	降伏強度 f _{wy} (N/mm ²)	せん断補強鉄筋間隔 s _s (mm)	せん断補強鉄筋比 p _w (%)
1	1,000	500	1,000	1.0	29.2	D32	440.7	1.9	D16	349.7	90	0.88
2	1,000	500	1,500	1.5	29.6	D32	440.7	2.69	D16	349.7	70	1.13

キーワード ディープビーム, せん断耐力, 実構造物, せん断補強鉄筋 連絡先 〒151-8578 東京都渋谷区代々木2-2-2 東日本旅客鉄道(株) 建設工事部 構造技術センター TEL 03-5334-1288

写真-1 最大荷重時のひび割れ状況(試験体 No. 1)

央部のせん断補強鉄筋が降伏した.その後,圧縮側基部 に細かいひび割れが多数発生し,圧縮ライン上の斜めひ び割れ幅が広がった後,最大荷重に達した.最大荷重後, 変位の増加に伴う荷重低下は緩やかだった.

4.2 せん断補強鉄筋のひずみ発生状況

試験体 No.1 の最大荷重時のせん断補強鉄筋のひずみ を図-4 に示す. 図中の数字は, せん断補強鉄筋の引張ひ ずみを正の値で示し, 降伏している箇所を▲印で示す. 最大荷重時で, 両試験体ともせん断補強鉄筋は圧縮スト ラット部で降伏し, 降伏した範囲も同様であった.

4.3 コンクリートの圧縮ひずみ

最大荷重時の圧縮ひずみは、両試験体ともに、圧縮ライン上の圧縮側基部付近のみ、3500μを超える値を示した.

5.実験結果と計算結果の比較

せん断耐力の実験結果と計算結果の比較を表-2 に示す.

図-4 最大荷重時のせん断補強鉄筋ひずみ(試験体 No. 1)

表-2 実験結果と計算結果の比較

No	計算値(kN)												
	(1)式	(2)式 $V_c + \phi \cdot V_s$				(3)式 min(V _c '+V _s ,V _{wc})			/ _{wc})	実験値 P			
	V_y (=k·V _c)	P _{max} /V _y	V _c	V_y	P _{max} /V _y '	V _c	$\phi \cdot V_s$	V_y "	P _{max} /V _y "	V _c '	Vs	V _{wc}	(kN)
1	1,804	1.48	1,463	2,157	1.24	1,463	694	2,739	0.97	1,411	1,328	3,344	2,665
2	1,678	1.74	1,011	2,019	1.44	1,011	1,008	2,700	1.08	995	1,705	3,360	2,915

なお,(1),(2)式のせん断スパン La は載荷板中央からフ ーチング天端までの距離とした.両試験体において,実 験値と計算値の差が最も小さいのは(3)式で,比較的精 度よく評価できている.なお,両試験体ともに,最大荷 重時にせん断補強鉄筋が降伏しているため,(3)式にお いて,せん断耐力 V_y "がせん断補強鉄筋が負担するせん 断耐力 V_s を考慮し, V_c '+ V_s により決定されるのは妥当と 考えられる.

6. まとめ

今回,実構造物大の RC 試験体を対象とした水平加力 試験により得られた知見を以下に示す.

- ・最大荷重時において、両試験体ともに圧縮ストラット 部において斜めひび割れが発生し、せん断補強鉄筋が 圧縮ストラット部において降伏した後、せん断耐力に 達した. せん断補強鉄筋が降伏する範囲もほぼ同様で あった.
- ・実構造物大の RC 試験体のせん断耐力は、トラス理論 によるせん断補強鉄筋が負担するせん断耐力をそのま ま加算する評価手法(3)式にて、精度よく評価できた.

参考文献:

1) 土木学会:コンクリート標準示方書 設計編 [2007 年制定], 2007.

- 2)鉄道総合技術研究所編:鉄道構造物等設計標準・同解説 コンクリー ト構造物, 2004.4
- 3)谷村幸裕, 佐藤勉: スターラップを用いたディープビームのせん断耐 力の評価, 鉄道総研報告, Vol.18, No.1, pp.25-30, 2004.1
- 4)林川俊郎,斉藤文彦,角田与史雄:せん断補強鉄筋を有する RC ディ ープビームの強度について、コンクリート工学年次論文報告集、Vol.12, No.2, pp.319-324, 1990.
- 5)石橋忠良,松本浩一,菅野貴浩,築嶋大輔,小林將志:鉄筋コンクリート壁式橋脚のせん断耐力に関する実験的研究,土木学会論文 集 No.3/ Vol.65, pp.300-310, 2009.