国土数値情報によるSOMベース衛星画像分類処理(その3)

(財)リモート・センシング技術センター 正会員 ○杉村俊郎

1. はじめに

筆者は、地球観測衛星ALOS/AVNIR-2データに、国土数値情報(100 mメッシュ土地利用データ)を使ってSOM(Self-Organizing Maps)による分類処理を行う、汎用的な応用利用例を報告(平成20年度、平成21年度全国大会)した。ここでは地域性の違いを確認するために、札幌と北九州について本手法による処理を行い、学習データの選定や、競合層の設定等、その効果と問題点について考察した。

2. テストサイトおよび使用データ

2006年10月10日に観測された札幌および2006年9月15日に観測された福岡のALOS/AVNIR-2データを使用した。 既報の処理では2007年3月に観測された神奈川県(横浜〜横須賀)のデータを使用したので、地域的および季節的影響の違いが確認できる。

3. 処理手順と結果

ニューラルネットワークを利用した教師なし分類手法の最も簡単なモデルである SOM (自己組織化マップ)において、16 × 16 および 8 × 8 の競合層を設定し、札幌北西部の農地が多くを占める領域と、主に市街地が多くを占める福岡の画像データを使って学習を進めた。その後、100m メッシュ土地利用情報の各分類項目毎に、それぞれが含む画素が競合層の各ノードにどのように分類されているかを調べ、競合層の各ノードで占有度(各ノードに分類された画素数/分類項目に含まれる画素数)の高い分類項目を出力値とすることで、分類処理を行った。

Fig.1、2 に学習に使用した AVNIR-2 画像を示す。札幌の画像から、札幌北西部の江別市(農地、市街地、

Fig.1 学習に使用した札幌北西部 AVNIR-2 画像

Fig.2 学習に使用した福岡 AVNIR-2 画像

キーワード ALOS/AVNIR-2、国土数値情報、自動分類処理、ニューラルネットワーク 連絡先 〒106-0032 東京都港区六本木1-9-9 (財) リモート・センシング技術センター TEL 03-5561-8773

森林、河川を含む)を選定した。福岡の画像からは、福岡市(市外地、海水域、若干の植生域を含む)を選定した。Fig.3、4に処理結果を示す。また、分類精度はTable 1、2のとおりであった。

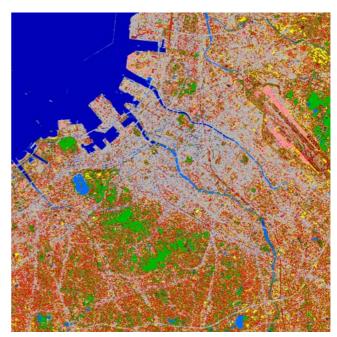


Fig.3 1,000 回学習後の江別市分類結果

Fig.4 1,000 回学習後の福岡市分類結果

凡例:田(黄)、畑(茶)、森林(濃緑)、荒地(濃赤)、建物用地(赤)、幹線道路(灰)、 その他(桃)、河川(明青)、海浜(白)、海水(青)、ゴルフ場(明緑)

Table 1 札幌での分類精度

Table 2 福岡での分類精度

		国土数值情報					合計
		水+畑+荒	森林	建+幹+そ	川+海	ゴルフ場	
	水+畑+荒	58.21	2.42	18.17	3.87	17.32	100.00
账	森林	12.03	71.14	8.43	1.43	6.98	100.00
分類結果	建十幹+そ	17.66	3.53	62.48	5.13	11.20	100.00
₹	川+海	37.10	4.41	14.66	24.91	18.91	100.00
	ゴルフ場	8.84	3.25	6.26	4.60	77.05	100.00

		国土数值情報					合計
		水+畑+荒	森林	建+幹+そ	川+海	ゴルフ場	DAI
	水+畑+荒	56.90	5.23	35.39	2.48	0.00	100.00
眯	森林	30.13	44.27	22.58	3.02	0.00	100.00
分類結果	建十幹+そ	32.88	7.88	55.14	4.09	0.00	100.00
₹	川+海	5.59	1.47	10.68	82.26	0.00	100.00
	ゴルフ場	0.00	0.00	0.00	0.00	0.00	

		分類結果				合計	
		水+畑+荒	森林	建十幹+そ	川+海	ゴルフ場	TAT
	水+畑+荒	78.90	2.71	8.06	10.26	0.06	100.00
華	森林	14.79	72.33	7.27	5.50	0.10	100.00
数面	建十幹+そ	41.64	3.22	48.21	6.85	0.07	100.00
国土数值情報	川+海	35.39	2.17	15.78	46.45	0.21	100.00
	ゴルフ場	65.36	4.38	14.23	14.56	1.47	100.00

				分類結果			合計
		水+畑+荒	森林	建+幹+そ	川+海	ゴルフ場	
	水+畑+荒	4.89	1.56	90.12	3.42	0.00	100.00
国土数值情報	森林	1.78	9.09	85.56	3.57	0.00	100.00
	建+幹+そ	1.88	0.72	93.36	4.04	0.00	100.00
	川+海	0.34	0.25	18.12	81.29	0.00	100.00
	ゴルフ場	0.00	0.00	0.00	0.00	0.00	

4. 考察と展望

国土数値情報の分類項目と土地被覆分類項目の差違は、横浜、札幌、福岡、いずれも同様なものであった。 両者の違いを相殺するためには分類項目の統合が必要である。

学習において、平均化により分解能を整合して処理した場合と、分解能はそのままで一部領域を代表して 処理した場合でも、ある程度の精度で分類処理出来ている。

汎用的なアルゴリズムとするため、本手法で処理した大分類結果に基づき、各大分類項目毎にクラスタリング処理を行い、分類結果を細分化することを検討する予定である。