幌延深地層研究所の立坑掘削における岩盤挙動

日本原子力研究開発機構	正会員	○津坂	仁和
日本原子力研究開発機構		常盤	哲也
日本原子力研究開発機構		稲垣	大介

1. 序論

日本原子力研究開発機構は、北海道幌延町で新第三 紀の堆積軟岩に地下研究施設の建設を行っている.筆 者らは、これらの坑道の掘削に伴う岩盤の変形や物 性・透水性の変化を計測し、立坑周辺岩盤の掘削影響 領域の範囲や程度の評価を行っている.経験的には、 堆積軟岩に坑道を掘削した場合、その岩盤挙動は割れ 目の開口・伸展・閉口といった挙動よりも岩盤実質部 の変形が支配的となることが予測される.しかし、こ れまでに立坑掘削に伴う計測結果を分析すると、岩盤 に内在する割れ目がその挙動に大きく影響しているこ とが明らかとなってきた.ここでは、内径 4.5mの換気 立坑(以下,立坑という)で実施した地中変位計測の 結果に基づく岩盤挙動の分析結果について述べる.

2. ショートステップ工法における岩盤挙動

立坑の施工は、1m ずつ2m 掘削した後に、設計厚さ 40cm の覆工コンクリートを高さ 2m 構築することを 1 つの施工サイクルとするショートステップ工法を採用 している.現在、深度250mまで掘削している、同工法 を想定した逐次掘削解析を実施し、掘削に伴う空洞周 辺岩盤の変形を分析した. 解析には,汎用有限要素解 析コード ABAQUS を使用し、立坑の中心を回転軸とす る軸対称解析を行った.解析領域は、側方を立坑中心 から約 28m, 上下方向を 80m とした. 境界条件は, 側 方境界上の節点の水平方向変位と、

下側境界上の節点 の鉛直方向変位を固定した.掘削領域は、内径 4.5m に 0.4mの覆工コンクリートの設計厚さと0.1mの余掘りを 加えた直径 5.5m とし、上方境界から 60m とした. 深度 220m を解析領域の中心深度と設定し、自重の作用のも とで初期応力状態を設定した.側圧係数は1.1とした¹⁾. 初期応力解析の後,逐次掘削解析を実施した.岩石は モール・クーロンの破壊基準に従う線形弾・完全塑性 型を仮定した. 岩石の物性値として, 室内力学試験結 果²⁾をもとに、単位体積重量を15.1kN/m³、静弾性係数 を 930MPa, ポアソン比を 0.164, 粘着力を 2.2MPa, 内 部摩擦角を15°とした. コンクリートの物性値として, ヤング率を 8,700MPa, ポアソン比を 0.2 とした. 施工 実績では、コンクリートの打設完了から次の施工サイ クル完了までに約60時間を要しているため、ヤング率 は設計基準値(25,000MPa)の約35%の値とした.また,

覆エコンク	リート	と立坑壁面の滑	・りは考慮し	_ていない.
-------	-----	---------	--------	--------

解析上の深度 221.5m での切羽の進行に対する壁面と 壁面から 0.5m, 1.5m, 2.5m, 4m 深部の変位量を図-1 (a) に示す.同図には,比較として無支保での変位量の推 移も示す.切羽が計測断面より 0.5m 上方に到達後から, 変位量は大きく生じる.計測断面を通過する際に最も 大きな変位が生じ,切羽距離が 1.5m の時点で,覆エコ ンクリートが構築され,それ以降では,変位量は顕著 に抑制される.覆エコンクリート構築後の変位量の推 移を図-1 (b) に示す.収束時の変位量は,立坑壁面の値 が最も小さく,無支保の場合の約 30%である.最も変 位量が大きい測点は,深部 1.5m と 2.5m であるため, 壁面から岩盤深部 2.5m の間の岩盤には圧縮変位が生じ る.以上より,ショートステップ工法では,覆エコン クリートにより,立坑周辺岩盤の変形が顕著に拘束さ れ,壁面から約 2.5m の範囲に圧縮方向の変形が生じる.

3. 地中変位計測の結果と考察

地中変位計測は、深度 84.5m, 121.5m, 221.5m の 3 断面にて実施された.各断面にて、東西南北を基準と して計8方向に多段式地中変位計を設置した. 覆工コ ンクリートを構築する前に,掘削面から約1.5m上方に 設置し、覆工コンクリート構築後から計測を開始した. 坑壁から 0.5m, 1m, 1.5m, 2.5m, 4m に測点用アンカ ーを設置(ただし,深度121.5mでは6mにも設置)し, 壁面近傍を基準点として算出した各測定アンカー間の 変位量をその区間長で除した区間ひずみの分布を求め た. 深度 221.5m での結果を図-2 (a) に示す. 同結果は, 変形が収束した時点の計測値である. 同図には、比較 として,第2章と同じ岩石物性を入力値とする軸対称 解析で求めた区間ひずみも示す.西・南西方向以外の 全ての方向において、0.5~1%程度の顕著な圧縮ひずみ の生じる区間が立坑壁面から 1m 以内に分布する. 数値 解析結果では、立坑壁面から1.5mの範囲に圧縮方向の ひずみが生じ、その大きさは最大で 0.05% である. 数値 解析結果を岩盤実質部の変位量と考えれば、これらの 方向においては、岩盤の変形に対する岩盤に内在する 割れ目の挙動が支配的であることが推察される.

地中変位計を設置した際に採取したボーリングコア を観察し、ボーリング孔軸上に認められる断層、引張 性の割れ目、断層岩を抽出した.区間ひずみを算出し

キーワード 立坑掘削,堆積軟岩,ショートステップ工法,岩盤挙動,地中変位計測 連絡先 〒098-3224 北海道天塩郡幌延町北進 432-2 幌延深地層研究センター TEL 01632-5-2022 た5つの区間における割れ目の頻度分布を図-2(b)に示す.8方向の総ボーリング長さ32mにおける断層と 断層岩が存在する区間の比率は81%である.断層に加 え,北東と南東方向の壁面から2.5mの範囲には引張割 れ目が分布する.結局,立坑壁面から4mの範囲には, 断層や断層岩,引張割れ目が高頻度で分布する.

以上より、断層や引張性の割れ目が多く分布する堆 積軟岩をショートステップ工法により立坑を施工した 場合の岩盤挙動は、以下のように考えることができる. 立坑掘削前には引張割れ目がほとんど認められないこ と³⁾を考慮すると、覆工コンクリートを構築するまでに、 岩盤実質部の変形だけでなく、坑道周辺岩盤に内在す る割れ目の開口・伸展が生じる.その後、覆工コンク リートを構築して掘削を進めると、覆工コンクリート によって岩盤の内空側への変形が抑制され、掘削によ って一度開口や伸展した割れ目が再び閉口する.この 結果、地中変位計測結果においては、立坑坑壁から 1m 以内に顕著な圧縮ひずみが分布したと考えられる.深 度 84.5m と 121.5m での計測結果も同様の傾向を示す.

4. 結論

幌延深地層研究所の換気立坑で実施した地中変位計 測結果と数値解析より, 堆積軟岩を対象としたショー トステップ工法での立坑掘削においては、岩盤実質部 の変形よりも、岩盤に内在する割れ目の開口・伸展・ 閉口などの変形が顕著に生じ、その範囲は坑壁 1m 以内 であることが明らかとなった. 今後は、この岩盤挙動 と岩盤の透水性の変化との関係を明らかにし、掘削影 響領域の発生機構とその範囲や程度を分析していく. 参考文献 1) 中村隆浩ほか:珪藻質泥岩における水圧破砕 法による初期地圧の推定,第12回岩の力学国内シンポジウム 講演論文集, pp.297-303. 2) 太田久仁雄ほか:太田久仁雄ほ か:幌延深地層研究計画における地上からの調査研究段階(第 1 段階)研究成果報告書 分冊「深地層の科学的研究」, pp.317-340, JAEA-Research, 2007-044. 3) 舟木泰智ほか: 新 第三紀堆積岩中の割れ目は主要な水みちとなり得るか?,応用 地質, 第50巻, 第4号, pp.238-247, 2009.

図-2 立坑周辺岩盤のひずみ分布と割れ目の頻度分布(深度 221.5m) (a) ひずみ分布, (b) 割れ目の頻度分布