雲仙普賢岳溶岩ドームの大規模地震による高速岩盤崩壊シミュレーション

光雄	〇中川	正会員	株式会社 地層科学研究所
正雄	山田	正会員	国土防災技術 株式会社
·紀行	中谷	正会員	国土防災技術 株式会社
朋晃	近重	正会員	長崎県 島原振興局

1. はじめに

1990年11月17日, 島原半島雲仙普賢岳で噴火活動が開 始され、九十九島・地獄跡火口から噴煙が立ち昇り、新た に屏風岩火口からも噴火した.翌年1991年5月20日に地 獄跡火口から溶岩ドームが出現し、4日後には溶岩塊が崩落 し最初の火砕流が発生した. 溶岩ドームは崩壊を繰り返し, 6月3日には火砕流により多数の犠牲者を出す大惨事となっ た、一連の火山活動は1995年2月以降沈静化しているもの の、火山活動によって出現した溶岩ドームでは急峻で不安 定な亀裂性岩盤が形成されている. 溶岩ドームは、出現か ら時間が経過する中で風化作用や火山体内部での熱水作用 によって崩れやすくなっている. この状況において, 強振 動によりドーム全体あるいはその一部が崩れて岩盤崩壊が 発生すれば、斜面下方にある島原市街地に大きな被害を及 ぼす懸念がある. 著者らは、大規模地震に起因した溶岩ド ームの崩壊に続き岩塊が高速で流下すると想定して, 多面 体ブロックを取り扱う 3 次元個別要素法(3DEC コード)を 用いて高速岩盤崩壊シミュレーションを実施し、その到達 範囲を予測し島原市の家屋や公共施設等に及ぼす影響を検 討したので、本報ではこれらの一部を報告する.

2. 高速岩盤崩壊シミュレーションの仮定と手順

2008 年5月12日に発生したマグニチュード8.0 の四川大 地震では、断層周辺で高速岩盤崩壊による多大な被害が発 生した.四川大地震の高速岩盤崩壊状況を参考に、以下の ようなシミュレーションの仮定と手順を設定した.

- 1)発生源の範囲は、火砕流堆積物、風化溶岩、溶岩の地 層構造を含み、溶岩ドームの地表面で観察された亀裂 状況から判断して決定する.
- 2)3次元地震応答解析を有限差分法(FLAC^{3D}コード)によ り実施して,発生源での亀裂性岩盤を剥離させる外力 を最大加速度より求める.また,1)での判断にも利 用する.
- 3) 崩落岩塊は、多面体ブロックを取り扱う3次元個別要素法(3DECコード)でモデル化し、2)で求めた外力を 崩落岩塊に与えて崩落シミュレーションを実施する.
- 4)高速岩盤崩壊シミュレーションが実現できるパラメー タとして、四川大地震で目撃された平均速度が40m/秒 以上になるように反発係数や摩擦係数を設定する.

図-1 3次元地震応答解析の有限差分法モデル

3.3次元地震応答解析

3-1 解析の概要

解析モデルを図-1 に示す.解析対象領域は、溶岩ドームを囲む東西2.8km、南北3.6kmの範囲とする.雲仙平成新山 周辺の地質構造は、溶岩、風化溶岩、火砕流堆積物、基盤 岩の4層構造とした.また、地形は、レーザープロファイ ルデータを基に作成したTinを利用した.入力地震動として、 2005年3月20日の福岡西方沖地震での島原観測点で観測さ れた波形を用いた.振幅は、図-2に示すようにN-S成分の 最大加速度が1000galとなるように振幅倍率を求め、E-Wお よびU-D成分にもこの倍率を与えて増幅した.

3-2 地震応答解析の結果

3 次元地震応答解析から,図-3 に示す最大加速度分布と その方位角が得られる.比較的急傾斜な箇所では 2000gal を超える加速度も見られる.また,断面表示より最大加速 度は地表付近に卓越していることが伺える.

キーワード 高速岩盤崩壊, 熔岩ドーム, 3 次元個別要素法, 多面体ブロック, 崩壊シミュレーション, 3 次元地震応答解析 連絡先 〒532-0011 大阪市淀川区西中島 5 丁目 7-19 (株) 地層科学研究所 防災・環境事業グループ nakagawa@geolab.jp

図-3 最大加速度分布(gal)

図-5 崩落岩塊の個別要素法モデル

4. 高速岩盤崩壊シミュレーション

4-1 対象溶岩 ドーム

現地調査と最新のレーザー画像より判断した溶岩横断亀 裂群の位置と発生源領域を図-4に示す.

4-2 解析モデル

個々の崩落岩塊は疑似岩盤として直方体を仮定し、20m ~50mの寸法となるように乱数を用いてランダムな寸法の ブロックを発生させた.岩塊の総数は269個である.図-4 に基づく発生源で崩落岩塊のモデル化を図-5に示す.

図-6 高速岩盤崩壊の過程

4-3 シミュレーションの結果

崩落開始5秒,30秒,70秒の岩塊の流下状況を図-6に 示す.全ての岩塊が70秒で停止した.岩塊の最高速度は 60~100m/sec,平均速度は40~60m/secであり,高速岩盤 崩壊の想定速度を再現できていることが分かる.

5. おわりに

高速岩盤崩壊を再現することができた. 岩塊が砂防施設 を超えて島原市内へ流れ込むと当初予想したが, 到達には 至らなかった. 今後は解析条件を再検討する必要があろう.

参考文献

- 1)中川 光雄・山田 正雄・中谷紀行・近重朋晃:合理的な接 触判定法に基づく3次元個別要素法による落石・岩盤崩 壊シミュレーション,日本地すべり学会誌,Vol.47, No.3, 2010(掲載予定).
- 2)長崎県島原振興局林務課:火山地域総合治山調査業務報告書,2008.