プレボーリングモルタルH鋼杭の支持力評価 (その1:鉛直載荷試験による検証)

東海旅客鉄道株式会社 正会員 〇中村ひとみ 正会員 礒野純治

> 正会員 安原真人 正会員 稲熊弘

財団法人 鉄道総合技術研究所 正会員 神田政幸 正会員 西岡英俊

1. はじめに

プレボーリング工法におけるモルタルH鋼杭は、線路上 空桁架設用構造物におけるベントの杭基礎として, 既設鉄 道構造物への影響の軽減、工期短縮、低騒音・低振動と施 工性の観点から有効な工法である. しかしながら、鉄道構 造物の設計基準においては、「特殊な施工法」に位置付けら れ、現在も定量化された設計手法は確立されていない.

プレボーリング工法における既往の研究¹⁾としてH鋼杭 の支持力特性に関する研究が行われているが、モルタルと H形鋼を一体とさせた支持力特性に関しては、未だ未解明 な点が多い. これらの理由から, 本研究では、H形鋼を芯 材として一体化されたモルタル杭(モルタルH鋼杭)の支 持力特性を把握するため, 杭の鉛直載荷試験を実施し, 既 往の場所打杭算定式との比較検討を行った.

2. 試験概要

(1) 試験杭の施工方法

試験杭の施工は、シルトを主体としたA地区で2本(試験 杭1,2),軟岩を主体とした地盤のB地区で1本(試験杭3) 実施した. 試験杭を施工した地盤の土質柱状図を図1, 試験 杭の諸元を表1に示す。A地区の試験杭の施工は、地下水 位が高く、砂質土層が存在することから、ケーシングを使 用して施工を行った. 施工順序としては, φ700mmのオーガ ーヘッド・スクリューの外側に o 800mm のケーシングを併用 して自然泥水で掘削した後、オーガーヘッド・スクリュー を引上げ、バケットにて孔底のスライム処理を行った. そ の後、泥水中にH形鋼を建込み、速やかに注入ホースによ るポンプ圧送でモルタルを打設した. B地区の試験杭の施 工は、地下水位が杭先端よりも深いことから素掘りで行っ た. 施工順序としては、 φ810mm のハンマーをモーターで回 転させ、圧縮空気により先端ビットで孔底を叩きながら削 孔した後、ハンマー先端からエアーを送り出して孔底処理 を行った。その後、コンクリートバケットを用いてモルタ ルを打設し、H形鋼の建込みを行った.

(2) 鉛直載荷試験

鉛直載荷試験は、「地盤工学会基準・杭の押込み試験方法 (JGS1811)」に準拠して、段階載荷方式・多サイクルで実 施した. 計測は、杭頭・杭先端・モルタル天端の変位量お

表1 試験杭の諸元

試験杭1(A地区	: L=6m)	試験杭2(A地区:L=3m)		試験杭3 (B地区:L=5.3m)	
モルタル径	φ800	モルタル径	φ800	モルタル径	φ800
H鋼諸元	H350×350	H鋼諸元	H350×350	H鋼諸元	H400×400
	37.2N/mm ²		42.6N/mm ²		34.4N/mm ²
モルタル弾性係数	19.6N/mm ²	モルタル弾性係数	20.5N/mm ²	モルタル弾性係数	20.8N/mm ²

表 2 基準支持力算定結果

試験杭1(A地区:	L=6m)	試験杭2(A地区:	L=3m)	試験杭3 (B 地区 :1	L=5.3m)
基準先端支持力	385kN	基準先端支持力	120kN	基準先端支持力	2500kN
基準周面支持力	571kN	基準周面支持力	35 1kN	基準周面支持力	2661kN
合 計	956kN	合 計	47 1kN	合 計	5161kN

(a) A地区柱状図

(b) B地区柱状図

図1 土質柱状図

よび杭体ひずみ量を計測した. 杭体ひずみ量の計測は、H 形鋼にひずみ計、モルタル部に鉄筋計を設置し、同一断面 で個々に計測した. また, 杭先端変位量は, H形鋼にガス 管を取付け、更に径の小さい管を先に取付けた管の中に挿 入して二重管式の沈下計とし、杭頭部で計測を行なった.

載荷試験を計画する際の設計支持力は、鉄道構造物等設 計標準・同解説(基礎構造物)²⁾(以下,基礎標準という) における場所打ち杭の基準支持力算定式を用いて求めた. なお, 周面支持力算出時の杭の周長はモルタル部の周長, 先端支持力算出時の先端面積は、モルタル部の底面積で算 出した. 基準支持力の算定結果を表 2 に示す. なお、基礎 標準の基準支持力は、杭の載荷試験データから杭径の10% 変位における支持力を統計的に定めたものである.

3. 載荷試験結果

(1) 試験結果

載荷試験結果を表3、杭頭荷重・杭先端軸力・杭周面支持 力と杭先端変位量の関係を図2に示す. 試験杭1,2は、ピ

キーワード:プレボーリング工法,モルタルH鋼杭,ベント基礎,載荷試験

連絡先:〒450-6101 名古屋市中村区名駅一丁目1番4号JRセントラルタワーズ TEL052-564-1723 FAX052-564-1730

ーク荷重が現れないまま杭先端変位量が杭直径の10%(0.1 D:80mm) に達したため、0.1D到達時の杭頭荷重を第2限 界抵抗力とした. 試験杭 3 は、設計鉛直支持力以上の荷重 を載荷したが、ピーク荷重が現れず、0.1Dの変位量にも達 さなかった. なお, 試験杭1については, 杭頭荷重が荷重 低下を生じていないが、杭先端支持力で見ると、308kNでピ ークに達して荷重低下を示している. また, 全載荷試験の 杭頭でモルタル天端とH鋼頭とのずれ変位量を計測したが、 いずれも 1.3mm 以下の微小な値であり、H形鋼とモルタルと の付着切れが生じていないことを確認している.

(2) 基準支持力の算定値と実測値の比較

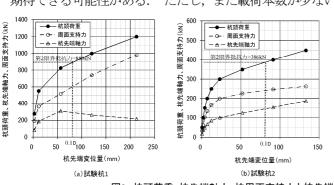
各載荷試験における基準支持力の実測値と表 2 の算定値 の関係を図3、N値と支持力度の関係を図4に示す. 載荷試 験結果より、基準先端支持力の Rc/Rt (算定値/実測値) は 0.94~1.22 であった.

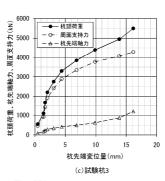
(3) 既往の場所打ち杭の載荷試験結果との比較

図3.4には、比較のために既往の場所打ち杭の鉛直載荷 試験事例3)をプロットした. 白抜きプロットは, 杭先端変位 0.1D未満のデータを示している. 場所打ち杭の試験値と, 今回の試験結果から、プレボーリング工法におけるモルタ ルH鋼杭は、場所打ち杭のばらつきの範囲内にあるといえ る. これは今回の試験杭の掘削工程での地盤の緩みの影響 が、場所打ち杭の掘削時と同程度(試験杭1,2はオールケ ーシング工法に近く、試験杭3は自立性の高い軟岩で緩み はほとんど生じない)であったことが要因と考えられる.

これらの結果から、適切に施工されたプレボーリング工 法におけるH鋼杭は、場所打ち杭と同程度の支持力特性が 期待できる可能性がある. ただし、まだ載荷本数が少ない

ことや、場所打ち杭とは施工管理条件が異なることなどを 考慮して支持力評価式あるいは施工上の制約条件等を設定 する必要があると考えられる.


4. まとめ


プレボーリング工法によるモルタルH鋼杭の支持力特性 について、鉛直支持力の確認を行い、場所打ち杭と同程度 の支持力特性が期待できる可能性があることが分かった. しかしながら、場所打ち杭のRC構造に比べてH形鋼とモ ルタルとの付着切れによる支持力低下の恐れがあり、特に 地震などの水平力が作用した場合の挙動など、未解明な点 もある、これらの点については、別途、H形鋼とモルタル の付着試験40や曲げ試験50を実施して検討を行っている. 今 後は、これらの結果をもとに、統計的な考察を深めて、モ ルタルH鋼杭の合理的な設計手法を確立させる予定である.

参考文献

中)

- 1) 小松徹, 渡辺康夫, 大村博昭, 本島浩孝: プレボーリング工法 によるH形鋼杭の打設と鉛直載荷試験,第62回土木学会年次学術 講演会, 2007.
- 2) 運輸省鉄道局, 鉄道総合研究所: 鉄道構造物等設計標準・同解 説(基礎構造物·抗土圧構造物), 1997.3.
- 3) 西岡英俊,神田政幸,舘山勝,矢崎澄雄:鉄道構造物に用いる 杭の基準支持力の推定式の検証と提案,第62回土木学会年次学術 講演会, 3-238, 2007.
- 4) 猪股貴憲, 礒野純治, 稲熊弘, 安原真人, 西岡英俊, 白仁田和 久: プレボーリングモルタルH鋼杭の支持力評価(その2:付着試 験による検証),第65回土木学会年次学術講演会,2010.(投稿中) 5) 礒野純治,中村ひとみ,稲熊弘,安原真人,神田政幸,西岡英 俊:プレボーリングモルタルH鋼杭の支持力評価(その3:曲げ 試験による検証), 第65回土木学会年次学術講演会, 2010. (投稿

試験杭1	基準先端支持力	292kN
(A地区:	基準周面支持力	597kN
L=6m)	第2限界抵抗力	889kN
試験杭2	基準先端支持力	145kN
(A地区:	基準周面支持力	241kN
L=3m)	第2限界抵抗力	386kN
試験杭3	基準先端支持力	1204kN
(B地区:	基準周面支持力	4296kN
L=5.3m)	第2限界抵抗力	5500kN以上

表 3 載荷試験結果

図2 杭頭荷重・杭先端軸力・杭周面支持力と杭先端変位量の関係

◆場所打ち杭(砂質+

▲場所打ち杭(砂礫)

25

50

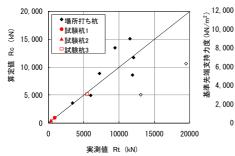
N値

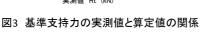
(a)基準先端支持力度

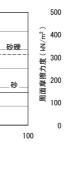
75

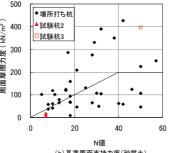
試験杭1

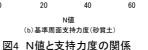
試験抗


12,000


8, 000


6.000


4.000


2.000

