鉛直管に投入した土砂の流動と堆積に関する遠心模型実験

名古屋工業大学	\$ 学生会員	○今瀬 達也
東洋建設(株)鳴尾研究所	斤 正会員	鶴ヶ崎和博
名古屋工業大学	を 正会員	前田 健一
東洋建設(株)鳴尾研究所	f	菱沼由美子

1. はじめに

我が国における主要港湾では、過去において埋立 用材やコンクリート骨材の土砂採取が行われてきた 結果,大きな深堀り跡地が多数存在している.その 形状は大別して2種類あり、東京湾・大阪湾・三河 湾などで多く見られるような局所的に鉛直方向に深 く掘られている窪地型と、瀬戸内海に多くみられる 広域的でなだらかな平滑型がある.特に,前者にお いては、海水交換の悪化と有機物の分解などにより、 貧酸素水塊及び青潮が発生し,水質環境等の悪化が 懸念されている.また同時に、生物の生息・生育環 境への影響も考えられていることから, 窪地を埋め 戻す必要性が検討されている¹⁾. 海底の埋め戻し工 事においては様々な工法があげられるが、本研究で は、海洋工事の代表的な施工方法である鉛直管によ る土砂投入に着目し、土砂を投入した際の管内流動 および堆積形状などの施工性と土砂投入時の窪地周 辺に与える環境への影響について実験および数値解 析により検討を行うことを目的としている.

本稿では、東洋建設(株)鳴尾研究所が所有する ビーム型遠心力載荷装置を用いて、相似則を満たし た遠心場において実施した土砂投入実験の結果につ いて述べる.

2. 実験概要

本研究では、東洋建設(株)鳴尾研究所が所有す るビーム型遠心力載荷装置を用いて,遠心模型実験 を実施した.実験領域は、内寸 600×550×150[mm](長 さ×高さ×奥行)の土槽を用いており、鉛直管および 土砂投入装置を設置した.鉛直管は,通常3次元円 筒管であるが、ここでは、3次元の複雑な現象を除外 するため, 管径 40[mm], 奥行 150[mm]の 2 次元矩形 断面の鉛直単管を設置した(図1).実験では遠心加 速度 50G を与え、幾何学相似則において、ある現場 施工事例の寸法に合うように模型寸法を設定した. ここで、実験における相似則の関係を表1に、実験

ケースを表2に示す.土砂 投入量は現場施工事例から, 容器 10[m³]のバックホー投 入することを想定し, 遠心 場における土砂量を換算し た. 土砂材料に関しては、 通常,粘土を投入するが, 本研究においては、豊浦標 準砂,カオリン粘土、神戸 粘土の物性が異なる様々な 材料を投入した.本稿では, 絶乾状態の豊浦標準砂につ いての管内流動や堆積状況

などの考察について述べる.

図1 実験模型概要

表1 実験における相似則

	原型	模型		原型	模型
縮尺比	1	1/n	時間	t	t/n
長さ	L	L/n	圧力	р	р
面積	S	S/n^2	応力	σ	σ
体積	V	V/n^3	ひずみ	3	3
加速度	1G	nG	間隙水圧	и	и
速度	v	v			

表 2 実験諸元

実験ケース 試料	投入土砂量	水深	管径	管長	クリアランス	
	武科	^{訊科} 遠心場(m ³)	遠心場(m)	遠心場(m)	遠心場(m)	遠心場(m)
caae1	·豊浦砂	30.00	11.00	2.00	11.00	1.50
caae2		30.00	11.00	2.00	3.25	9.75
caae3		30.00	4.00	2.00	3.25	1.50
caae4		30.00	18.00	2.00	18.50	2.00

3. 実験結果と考察

まず,投入土砂の管内流動について述べる. 落下土砂が管の側面を流動するのは、 遠心場にお いてコリオリカの影響を受けているためと考える.

キーワード 鉛直管,土砂投入,管内流動,堆積形成,遠心模型実験 連絡先 〒455-8555 愛知県名古屋市昭和区御器所町

名古屋工業大学 16 号館 227 号室 TEL052-735-5497

各条件に応じて,豊浦標準砂を投入したところ, 既往の研究²⁾で粘性土を投入する場合に確認されて いるような脈動しながらの落下ではなく,スムーズ に流下した.脈動しなかった理由として,既往の研 究では脈動の要因に水位変動をあげているが,今回 の砂の投入ではあまり大きな水位変動を起こさなか ったことが挙げられる.これは,砂時計のように砂 粒が塊とならず,土砂投入時に管内水面にさほど大 きな衝突エネルギーを与えないためである.しかし, 粘性土の場合は塊として落下するため,土砂投入時 に管内水面に与える衝突エネルギーは大きい.その ため,拘束されている管内では水位変動がさらに大 きくなり脈動を発生させると考える.次に,落下速 度について考察する.実験時に撮影した画像よりPIV

(Particle Image Velocimetry)を用いて速度分布を求 めた.同時に stokes の沈降速度式(式1)により速度 を算出し,両者の比較を行った.

$$v = \frac{(nD_p)^2 (\rho - \rho_w) \cdot (ng)}{18\eta} \quad \cdot \cdot \cdot (\exists 1)$$

ここに、 D_p : 粒子径 ($D_{50} = 0.17$ mm), n: 加速 度比、 ρ : 土粒子密度 ($\rho_d = 1.5 \text{ t/m}^3$)、 ρ_w : 流体 密度、g: 重力加速度、 η : 流体の粘性係数である. 式1より算出した結果は、0.982[m/s]であった. PIV による解析結果 (**図**2) においは、奥行などの影響に より全体的な速度分布が表現できていないものの、 投入後の土砂は式 1 の算出結果と同等の速度

(0.8~1.2m/s)で沈 降していることがわ かった.しかしなが ら,土砂が底面に到 達した後は,鉛直管 内を逆上する流れや 渦流が発生し,非常 に複雑な流れが発生 する様子を観察した.

図2 PIVによる速度分布

次に、土砂の堆積について述べる.通常、砂の沈 降堆積は、気中落下において土砂を断続的に投入し た場合(図3)のように、投入された土砂が斜面を滑 りながら除々に堆積し、はじめに形成された形が相 似的に拡大するようなイメージである.天端が平ら なのは、落下する土砂の影響を受けているからであ

図3 気中落下による堆積の様子(a)-(d) る.しかし、今回のように水中落下する砂の堆積で は、落下する土砂流動の影響を受けた流体が、前投 入によって堆積した砂山の管口下の天端から鉛直下 方向に搔き乱すように縦穴を掘進していった(図4).

図4 水中落下による堆積の様子 掘進により舞い上がった土砂は、管内に吸い込まれ たり、堆積層の左右に捲きだされた.その後、形成 された縦穴には、舞い上がった土砂が沈降し緩く堆 積した.この現象は土砂投入毎に確認された.

<u>4. おわりに</u>

- ・粘性土の落下と異なり、土砂塊で投入されないため、脈動せずに落下した.また、初期土砂の落下 速度は Stokes の沈降速度式により算出した結果と ほぼ同等であった.
- ・土砂流動の影響を受けた流体力により、堆積層山 頂から縦穴を掘進した。縦穴には舞い上がった土 砂などが沈降し、積もるように緩く堆積すること がわかった。

<u>参考文献</u>

環境省:海域における深堀り跡等の埋め戻しに
関する考え方(案),平成18年
三重式鉛直管を用いた土砂投入における管内水循環
機構について,海洋工学論文集,第47巻,2000