建屋背後の風荷重に関する研究

東北工業大学大学院 学生会員〇伊藤 麻衣子 東北工業大学 正会員 相原 昭洋、正会員 新井 信一

建屋

Х

1. はじめに

強風に対して建屋の背後では風が弱くなると考えられている。例えば、台風時に船舶が港内で避泊しようと考える際に大き な建屋の背後を選ぼうとする。このような建屋の影を利用しようとするいくつかの研究^{例えば1)、2)、3)}があるが、船舶に作用する弱 くなったはずの風力が実際どの様に影響するかは十分調べる必要がある。風荷重に対する建屋の影響については風洞実 験が有力な調査方法といえるが、本研究では、二次元開水路床に粗度を配置して地上風の流速分布を有する流れを再現 し、建屋背後の流速場の特性と建屋背後の船舶に作用する流体荷重つまり風過重について調べた。さらに、現象の理解を 深める上で数値シミュレーションを用いて風荷重について実験値と比較し検討した。

h=0.2m

:0.05m

 $L_s = 2.4 m$

図1 実験状況図

↑原 点

 ∇

 $L_{s1} = 0.36m$

2. 実験の概要

図1に実験の状況を示している。 長さ10m、幅0.6m、高さ0.4mの 2次元開水路の上流に粗度、中央 部に建屋模型、その下流に船舶模 型を配置して、表1の水理条件の 下で実施した。縮尺は約1/200であ る。なお、計測範囲で1/7乗則を再

Flow -

表1 水理条件		
	流量 Q	0.0139m ³ /s
	断面平均流速	0.116m/s
	水深 h	0.2m
	レイノルズ数(h)	23400
	水路勾配	1/625

L_b=0.2m 0.4m 0.5m 0.6m

分力計

┗流水カバー

船舶模型

3. 実験結果

(1)建屋背後の流速場

図2に倉庫模型設置時の、 また、図3にフェンス模型設置 時の時間平均流速分布を示す。 ただし、船舶模型は設置して いない。流速 u は建屋の影響 が出ていない接近流速 U(断 面平均流速)で無次元化した。 建屋模型背後での高さY/d≤1 における流速は倉庫模型の方 がフェンス模型より速いことが

分かる。図中の点線は計測結果より推定した逆流域を示している。倉庫模型では X/d≒6 が、フェンス模型では X/d≒10 が 再付着点であり、逆流域の範囲は倉庫の方が狭いことが分かる。図4に倉庫模型設置時の、また、図5にフェンス模型設置 時の流速の乱れ強度分布を示す。両模型とも建屋の後流で乱れが大きくなりその影響は少なくとも X/d=16まで及んでい

キーワード:流速分布、乱れ強度、渦度、風荷重、変動強度 連絡先:宮城県仙台市太白区香澄町 35-1 東北工業大学建設システム工学科 新井研究室 TEL 022-305-3540 る。高さY/d≦1では両模型の乱れ強度に大 きな差は見られない。倉庫模型の乱れ強度 分布は上下に幅広くなっていくのに対し、フ エンス模型では始め狭く、かつ、水面に向か って突き出ていくように見える。しかし、X/d =16では全体的に広がることが分かった。

(2) 建屋背後の渦度

図6に倉庫模型の、また、図7にフェンス 模型の背後の渦度分布を示す。図中の黒 塗り部分が模型部を示している。建屋前面 の角で強い渦が発生している。倉庫模型で はやや水底に向かって流下しているがフェ ンス模型では上昇しながら流下しており、様 子が異なることが分かる。この渦度分布に沿 って流速の乱れ強度は増大していると見て よい。

(3)建屋背後の船舶の風荷重

図8に船舶に作用する流体荷重即ち時間平均風荷重 F を示している。 建屋模型が無い場合の時間平均風荷重が F_m である。建屋直背後の $L_b/d=4$ では逆流が生じているため風荷重が負になる。それより下流に行くほど風荷重は増加する。風荷重は倉庫模型の方が大きい。両模型とも実験範囲では建屋が無い時の風荷重の約 60%以下に低減している。

なお、シミュレーション計算を実施し、実験値との比較を行った。図9に その結果を示す。船舶と倉庫の距離が近いときに一致しているとは言えな いが、離れてくると実験のように風荷重が増加し、実験と近い値を示して いる。

一方、風荷重の標準偏差即ち変動強度 F。を図 10 に示す。建屋が 無い場合の変動強度が F。mである。変動強度は、建屋なしの場合に対して、 1.5 倍から 2.5 倍と大きくなることが分かる。この結果から船舶の動揺は建屋 背後で大きくなる可能性があると言える。

4. おわりに

建屋背後の流速場と港内避泊船舶に作用する風荷重について実験的 に検討した。その結果、建屋がない場合より時間平均風荷重は減少するが 変動荷重は増加することが分かった。今後、係留船舶の挙動を調べていきた い。

参考文献

1)鈴木博史・釣谷康(1990):港内係船船泊に対する近接構造物の遮風効果把握のための実験アプローチ、海洋開発論文集、VOL.6、pp113-117

2)新井信一・高梨誠一・平山久(1991):岸壁係留時に関する実船実測、海岸工
学論文集、第38巻、pp.741-745

 3) 佐藤昭人・我原弘昭(2006):漁船安全係留のための間伐材を用いた防風柵の 減風効果について、海洋開発論文集、VOL.22、pp343-348

図6 倉庫模型渦度分布

図7

フェンス模型背後の渦度分布

