低水路河岸渦の特性に関する研究 ―利根川新川通を対象として

東京工業大学大学院	学生会員	○松延	和彦
東京工業大学大学院	フェロー会員	石川	忠晴
東京工業大学大学院	学生会員	箕浦	靖久

1. はじめに

わが国の沖積部にある比較的大きな河川の河道は, 写真1に示すような複断面となっている.平常時には 低水路に流水を集めて水深を維持し,出水時は高水敷 に水が載り流水断面が増加する.しかし低水路と高水 敷の間の低水路河岸において流速が急変するため,写 真2に示すような大規模な渦による水平混合が発生し, 付加的抵抗や高水敷の土砂堆積が生じる.そこで本研 究では,このような低水路河岸渦の発生が顕著に現れ る利根川新川通を対象に,航空写真解析と数値シミュ レーションにより渦運動の特性を調べた.

2. 解析対象河道

利根川新川通は江戸時代初期に開削された人工河道 である.本研究では 133.0KP から 136.5KP の直線河道 部分を解析対象とした.低水路の左岸側には水制が突 き出ており,低水路河岸沿いには柳の群落がある.ま た高水敷は草地とグランドとして利用されている.

3. 航空写真解析

昭和 56年 8月出水で撮影された洪水航空写真を解析 した.同出水の栗橋(130.4KP)における水位と,川 侯(150.2KP)における流量を図 1 に示す.航空写真は 洪水ピークの 3 時間後の赤い丸を付した時間帯に撮影 された.高水敷に見える髭状の白い文様が河岸渦に対 応している¹⁾.

画像相関法と実体視を組み合わせた解析システム²⁾ を利用し、等間隔の格子点における流速ベクトルを求 めた.実スケールにおける格子間隔は $\Delta x=8.5m$, $\Delta y=$ 4.25m であり、解析精度は 0.065m/s である.解析結果 を図 2 に示す.白い文様とほぼ同じ周期で横断流速ベ クトルの揺らぎが確認できる.

そこで,横断流速の縦断図からゼロアップクロス法 により個々の渦を抽出した後,長さを基準化してアン

写真1 新川通 平水時

写真2 新川通 洪水時

図2 解析結果

キーワード : 低水路河岸, 渦長, アンサンブル平均, 渦の平面構造 連絡先 : 〒226-8502 横浜市緑区長津田町 4259 G5-210,211 石川研究室 Tel:045-924-5515

図5 流下する渦の様子と波長

サンブル平均し,ひとつの渦の流速パターンを求めた. 右岸側の流速ベクトルを図3に黒線で,背景 に発散分布をカラーコンターで示している.低水路河 岸は y=0.6 にある.なお,渦構造を見やすくするため, 平均流速を差し引いた流速ベクトルを示している.流 速ベクトルから,渦の軸は低水路から高水敷に傾いて いる.高水敷から低水路への流れの幅は比較的狭く

(x=0.1~0.3),低水路から高水敷への流れの幅は広い (x=0.4~0.9).また発散分布より前者では沈み込みが, 後者では湧き上がりが生じていることがわかる.

4. 数値シミュレーション

シミュレーションには準三次元流動モデルを用いた³⁾.解析区間における 500m 間隔の横断図から平均 的横断面形を図 4 のように作成した.高水敷の敷高は 両岸で等しいが,幅は左岸が右岸に比較して若干広く なっている.この断面で一定勾配の直線水路とした. 延長は 10km,河床勾配は現地と同じく 1/2500 とした. 下流端水位は,航空写真撮影時における栗橋と川俣の 観測値を内挿して与えた.また流量については,計算 で等流水深となるよう川俣の観測値を若干修正し 6915m³/s とした.計算時間は実時間で 22hr とし,流れ が安定した 10hr 以降の計算結果を用いることとした.

図5の上段に t=10.5hr での渦度の分布を示す.紫は時計回り,緑は反時計回りの渦度である.流入して 3000m ほどすると安定な渦列が形成されることがわかる.そこで t=10~22hr で 5min ごとのデータについて 個々の渦の長さを計測し,右岸側について流下距離と の関係を図5の下段にプロットした.渦長が完全に安

図6 渦の平面構造(数値解析)

定した後半 5000m について平均渦長を計算すると右岸 で 358m, 左岸で 395m であった.一方, 航空写真解析 による観測値は右岸で 356m, 左岸で 381m であり, 計 算結果とほぼ一致していた.

右岸と左岸のそれぞれについて,渦長が平均値に近 い渦を抽出し,航空写真解析の場合と同様に,安定領 域にある 193 個の渦の流速ベクトルをアンサンブル平 均し,ひとつの渦の平均的特性を求めた.その結果を 図6に示す.航空写真解析の結果(図3)と同様に, 渦軸が低水路から高水敷に傾いている.また高水敷か ら低水路への流れの幅は比較的狭く,低水路から高水 敷への流れの幅は広いことがわかる.また前者で沈み 込み,後者で湧き上がりの生じる点も類似している.

5. 結論

本研究の結論を以下に列挙する.

- 航空写真解析から得られた低水路河岸渦は、図3 に示したように渦軸が傾いた非対称形であり、平 均的な渦長は、高水敷がやや広い左岸で381m、右 岸で356mであった。
- 準三次元モデルによる数値シミュレーションでは、
 図5に示したように流下とともに安定な渦列が形成され、その平均渦長は両岸とも航空写真解析の結果とよく一致した.また渦の構造も大局的にはよく一致していた.

参考文献

- 福岡捷二・渡辺明英・上阪恒雄・津森貴行:低水 路河岸に樹木群のある河道の洪水流の構造,土木 学会論文集,No.509/II-30, pp.79-88, 1995
- 2) 箕浦靖久・石川忠晴・吉田圭介:実体視と画像相 関解析を併用した洪水航空写真解析手法の構築と 検証,水工学論文集第53巻,pp.997-1002,2009
- 吉田圭介・石川忠晴:2 次流の時間的発展を考慮 した水深積分モデルに関する基礎的検討,水工学 論文集第50巻,pp.781-786,2006