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 1．Introduction  
where (nx, ny, nxy,) are stress resultants, (εx, εy, εxy) are  
membrane strain, (mx, my, mxy) are  moment resultants and, Aij, 
Bij and Dij are membrane, membrane bending coupling and 
bending stiffnesses, respectively. For fully non-linear 
numerical experiments, linear sum of bi-harmonic function 
that satisfy the boundary condition of Eq.1 is adopted as the 
displacement functions u, v and w as shown in Eq. 4. 

 It is well-known that isotropic metal cylindrical shells under 
compression have buckling behaviour which is very sensitive 
to initial geometric imperfections1). In the case of orthotropic 
CFRP material, the angles and dispositions of fibre 
orientations, as well as the magnitudes of any imperfections, 
have been suggested to affect the buckling behaviour2). In this 
paper, the buckling behaviour of axially loaded CFRP 
reinforced steel cylinders have been made clear through the 
fully nonlinear numerical experiments. 
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2．Method of Analysis 

As shown in Fig. 1, the analytical model, having length L, 
radius of curvature R, shell thickness t, and axial load P is 
adopted here. The coordinate of shell is taken as x, y and z and 
the corresponding arbitrary displacement on the middle 
surface is adopted as u, v and w. The shell is considered 
simply supported and corresponding boundary condition is 
adopted as  

2 20,   0, 0, 0    at 0,w w x u x v x= ∂ ∂ = ∂ ∂ = = = L        (1) 
 
 
 
 
 
 
 

An anisotropic thin plate is considered and the material 
constants are obtained by using Halpin-Tsai equation3) as 
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where, subscripts F and P denote fibre and polymer, VF and VP 
as volume fraction, E1 as elastic coefficient and μ12 and μ21 as 
poison’s ratios. E2 is calculated by adopting parameter 
ξ =1+40 10

FV and shell modulus G12 is obtained by adopting 
ξ =2. In this study, expansion by the shear stiffness is 
neglected and stress and strain resultants for the laminated 
plates are obtained as  
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where, ui,j, vi,j and wi,j are the amplitudes of each harmonic 
function; i and j are the circumferential full-wave and the 
longitudinal half-wave number, respectively. The initial 
geometric imperfection is taken to consist of  a harmonic 

( ) (00 cos / sin π /w w by R f x L= ),b f
in which b and f represents the circumferential full-wave and 
longitudinal half-wave number, respectively. The sets of 
nonlinear algebraic equations characterizing the behaviour of 
the panels are obtained through the stationary of the TPE with 
respect to the each of the displacement degrees of freedom 
included in Eq.4. Solutions of these sets of nonlinear 
equations are achieved using a step-by-step process in which 
either load or displacements are used as control parameter. At 
each step, a Newton-Raphson iteration is used to provide 
convergence to an acceptable level of precision4). 
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2R Fig.2: Lamination of steel and FRP’s 
Fig.1: Shell geometry 

 

3. Results and Discussion 
For the analysis of reinforced shells, the adopted geometrical 

parameters are L/R= 0.512, R/ts= 405,  Es = 205GPa, EF = 
235GPa, μs = 0.3, μF = 0.3, μP = 0.34. Fig.3 shows the results 
of numerical experiments of load-deflection curves in the case 
of circumferential full wave number b=12 having 
imperfection amplitude 0.8mm, 4.0mm and 4.8mm. The 
heavy solid lines denote the condition of no reinforcement. 
Similarly, the slight solid lines, broken lines and dotted lines 
denote for reinforcement tf = 4mm for angle of fibre 
orientation θ=0°, 35°, 90°, respectively. As shown in Fig. 3 the 
buckling capacity is high for reinforced condition at θ=90° for 
all the  amplitudes. Fig.4 shows the incremental displacement 
as the buckling modes in the case of the imperfection 
amplitude 12,1  =0.8mm and 4.0mm. From this figure, it can 
be understood that the axial wavelength becomes longer when 
initial imperfection amplitude increases and there is little 
influence of reinforcement in the present numerical 
experimental models. Fig.5 shows the increamental 
deformation at the buckling load, for a typical case of these 
la rger  imperfec t ions ,  exhib i t ing  a  mode ,  h a v i n g 
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Fig. 6:  Load Spectra for tf =4mm and  θ = 90° 

a circumferential wave number close to that predicted by the 
RSM with  tf = 4, θ=90°, b=12 and f=1. A combination of i = 12 
and 24 results in a compound circumferential mode shape as 
shown in Fig. 5, having a localized circumferential 
wavelength  close to i=14. Fig.6 is the outcome of linear 
buckling analysis and RSM, obtained by using paper 
references 1) and 2). In Fig. 6, linear buckling loads are shown 
by upper spectrum of curves and RS buckling loads are shown 
by lower spectrum of curves. The linear buckling loads with 
varying longitudinal half-wave number j are defined as . 
Then, the corresponding circumferential full-wave number is 
obtained as 

,cm jP

( )cmi j . After that, its RS critical load associated 
with ( )cmi j  is calculated as *

,cm jP . As a result, the minimum 
value of *

,cm jP  can be selected as the RS criterion. Also, in 
Fig.6 the result of non-linear experiment is also plotted for 
axial wave number b = 8~17.0 
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4. Conclusion 
The nonlinear numerical experiments have been carried out 

for CFRP laminated reinforced steel cylinders under axial 
compression and it is understood that depending upon the 
amplitude, buckling load carrying capacity differs. Also, from 
the nonlinear numerical experiment, it has shown that when 
initial imperfection amplitude increases, the axial wavelength 
becomes longer. 
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Fig. 3: Load-deflection curves 

(a) =0.8mm and tf=0    (b) =4.0mm and tf=00
12,1w 0
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12,1w(c) =0.8, tf =4 and θ=90°  (d) =4.0, tf =4 

Fig. 4: increamental displacement for ts=4mm 
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Fig. 5:  Axially y = 0 and cicumferential wave distributions  

at x = L/2 for tf = 4mm, θ =90° and w = 4.0mm 0
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