# ハイアラーキ三次元シェル要素による厚板解析

## 1. まえがき

本研究では,種々の厚板理論を用いて定式化され た曲げ要素に平面応力要素の剛性を加えた平面シェ ル要素と等価で,三次元体のハイアラーキ三次元シェ ル要素を提案する.

この要素は、ハイアラーキソリッド要素<sup>1)</sup>におい て、Mindlinや Ressnerの一次せん断変形理論、Lo やKantの三次せん断変形理論、さらに高次理論と同 じ変位場を規定した要素である.これらの要素はソ リッド要素であるので変位成分は3成分であるが、厚 板理論と同じ変位場を用いるので、要素の総自由度 数は同じ理論で定式化された平面シェル要素と同じ になる.さらに、変厚板への適用が容易で、三次元体 であるのでソリッド要素と結合しても中央面が結合 されるというモデル化の矛盾は生じない.

以上の一次せん断変形理論型要素 (Mindlin 要素, Reissner 要素) と高次理論型要素を厚板解析に適用し て精度と収束性を調べる.

## 2. ハイアラーキ三次元シェル要素

#### (1) 高次理論型要素

六面体ソリッド要素の変位関数を次のように表す.

$$u(\xi,\eta,\zeta) = \sum_{m=0}^{M} \sum_{n=0}^{N} \sum_{l=0}^{L_{x}} N_{mnl}(\xi,\eta,\zeta) \cdot u_{mnl}$$
$$v(\xi,\eta,\zeta) = \sum_{m=0}^{M} \sum_{n=0}^{N} \sum_{l=0}^{L_{y}} N_{mnl}(\xi,\eta,\zeta) \cdot v_{mnl}$$
$$w(\xi,\eta,\zeta) = \sum_{m=0}^{M} \sum_{n=0}^{N} \sum_{l=0}^{L_{z}} N_{mnl}(\xi,\eta,\zeta) \cdot w_{mnl} \quad (1)$$

ここに、 $u_{mnl}, v_{mnl}, w_{mnl}$ は一般化変位、 $N_{mnl}$ は形 状関数、m, n, lは多項式の次数を表す. $\xi, \eta$ の最大 次数はM, Nで、 $\zeta$ の最大次数にはu, v, wに対して  $L_x, L_y, L_z$ を用いる. $L_x, L_y, L_z$ の採り方により、**図**-1 の各種の厚板理論に対応した板厚方向座標 $\zeta$ に関す る変位場を任意に規定することができる.

例えば、三次せん断変形理論と同じ変位場は、Lo 理論に対して式 (1) で  $L_x=L_y=3, L_z=2$ と、Kant 理 函館工業高等専門学校 正員 〇渡辺 力 長岡技術科学大学 名誉教授 正員 林 正



図-1 各種の厚板理論における変位場



図-2 一次せん断変形理論型要素

論では $L_x = L_y = L_z = 3$ と採れば良い.これらの要素 を三次せん断変形理論型要素と呼ぶことにする.

### (2) 一次せん断変形理論型要素

式 (1) の変位関数では、最大次数  $L_k \ge 1$  に採る必要があることから一次せん断変形理論の w の変位場を表現できない.よって、一次せん断変形理論型の 要素では、式 (1) の変位関数に  $L_x=L_y=L_z=1$ を用いて、Reissner 理論と Mindlin 理論を満足するように 構成方程式を修正して定式化する.

ー次せん断変形理論では、面外垂直ひずみ $\varepsilon_z=0$ となる.よって、三次元弾性理論理論の応力–ひずみ関係式において $\varepsilon_z$ を消去する.

$$\begin{cases} \sigma_x \\ \sigma_y \end{cases} = \begin{bmatrix} D_1 & D_2 \\ D_2 & D_1 \end{bmatrix} \begin{cases} \varepsilon_x \\ \varepsilon_y \end{cases} + \frac{\nu}{(1-\nu)} \begin{cases} \sigma_z \\ \sigma_z \end{cases}$$
(2)

せん断応力とせん断ひずみの関係式には,

$$\begin{cases} \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{cases} = \begin{bmatrix} G & 0 & 0 \\ 0 & G_s & 0 \\ 0 & 0 & G_s \end{bmatrix} \begin{cases} \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{cases}$$
(3)

を用いる.ここに、 $G_s = kG$ であり、Reissner 理論 ではk=5/6を用いる.

以上の修正により, 図-2 に示す三次元体の Mindlin 要素と Reissner 要素を定式化できる.

-615

| Model     | M=N | Mindlin 要素            |                          |                         |                         | Reissner 要素            |                          |                         |                         |      |
|-----------|-----|-----------------------|--------------------------|-------------------------|-------------------------|------------------------|--------------------------|-------------------------|-------------------------|------|
|           |     | $w^* 	imes 10^3$      | $\sigma_x^* \times 10^2$ | $	au_{xy}^* 	imes 10^2$ | $	au_{yz}^* 	imes 10^2$ | $w^* 	imes 10^3$       | $\sigma_x^* \times 10^2$ | $	au^*_{xy} 	imes 10^2$ | $	au_{yz}^* 	imes 10^2$ | DOF  |
| А         | 4   | $-1.3 \times 10^{-2}$ | $-5.6 \times 10^{-1}$    | $4.3 \times 10^{-1}$    | 5.7                     | $-1.3 \times 10^{-2}$  | $-5.9 \times 10^{-1}$    | $4.2 \times 10^{-1}$    | 5.6                     | 150  |
|           | 6   | $1.6 \times 10^{-4}$  | $-6.5 \times 10^{-3}$    | $2.1 \times 10^{-2}$    | $-6.8 \times 10^{-2}$   | $1.1 \times 10^{-4}$   | $-2.3 \times 10^{-2}$    | $2.3 \times 10^{-2}$    | $-7.5 \times 10^{-2}$   | 294  |
|           | 8   | $3.0 \times 10^{-5}$  | $7.3 \times 10^{-5}$     | $-1.4 \times 10^{-4}$   | $5.6 \times 10^{-4}$    | $1.9 \times 10^{-5}$   | $-1.1 \times 10^{-2}$    | $5.3 \times 10^{-4}$    | $-2.3 \times 10^{-3}$   | 486  |
|           | 10  | $8.8 \times 10^{-6}$  | $-7.9 \times 10^{-5}$    | $-2.1 \times 10^{-5}$   | $1.2 \times 10^{-3}$    | $5.4 \times 10^{-6}$   | $-7.9 \times 10^{-3}$    | $3.3 \times 10^{-4}$    | $-5.9 \times 10^{-5}$   | 726  |
| В         | 4   | $-1.4 \times 10^{-4}$ | $2.4 \times 10^{-2}$     | $-3.2 \times 10^{-2}$   | $-4.8 \times 10^{-1}$   | $-1.4 \times 10^{-4}$  | $2.3 \times 10^{-2}$     | $-3.2 \times 10^{-2}$   | $-4.8 \times 10^{-1}$   | 486  |
|           | 6   | $8.8 \times 10^{-8}$  | $-1.1 \times 10^{-4}$    | $-3.4 \times 10^{-5}$   | $-2.7 \times 10^{-4}$   | $1.3 \times 10^{-8}$   | $-1.9 \times 10^{-4}$    | $-8.5 \times 10^{-5}$   | $-3.1 \times 10^{-4}$   | 1014 |
|           | 8   | $8.7 \times 10^{-9}$  | $-2.2 \times 10^{-6}$    | $-6.4 \times 10^{-6}$   | $1.9 \times 10^{-5}$    | $-2.6 \times 10^{-9}$  | $-2.7 \times 10^{-5}$    | $1.3 \times 10^{-6}$    | $6.1 \times 10^{-6}$    | 1734 |
|           | 10  | $1.8 \times 10^{-9}$  | $-1.3 \times 10^{-7}$    | $-3.6 \times 10^{-8}$   | $-8.7 \times 10^{-7}$   | $-8.6 \times 10^{-10}$ | $-4.9 \times 10^{-6}$    | $-3.8 \times 10^{-6}$   | $-2.8 \times 10^{-6}$   | 2646 |
| 解析解 2),3) |     | 4.27284               | -28.7318                 | -8.00969                | 10.1957                 | 4.24127                | -28.8218                 | -7.95919                | 15.2936                 | _    |
| 厳密解       |     | 4.24878               | -29.0093                 | -8.04897                | 15.2936                 | 4.24878                | -29.0093                 | -8.04897                | 15.2936                 |      |
| 備考 (観測点)  |     | A-中央                  | A-上縁                     | B-下縁                    | B-中央                    | A-中央                   | A-上縁                     | B-下縁                    | B-中央                    | —    |

**表−1** 周辺単純支持板のたわみと応力の誤差 (一次せん断変形理論型要素, h/b=1/10)

**表-2**周辺単純支持板のたわみと応力の誤差(三次せん断変形理論型要素, h/b=3/10)

| Model    | M = N | Lo 型要素                |                          |                         |                         |      | Kant 型要素              |                          |                           |                         |      |
|----------|-------|-----------------------|--------------------------|-------------------------|-------------------------|------|-----------------------|--------------------------|---------------------------|-------------------------|------|
|          |       | $w^* \times 10^3$     | $\sigma_x^* \times 10^2$ | $	au_{xy}^* 	imes 10^2$ | $	au_{yz}^* 	imes 10^2$ | DOF  | $w^* \times 10^3$     | $\sigma_x^* \times 10^2$ | $\tau_{xy}^* \times 10^2$ | $	au_{yz}^* 	imes 10^2$ | DOF  |
| A        | 4     | $-9.1 \times 10^{-2}$ | 1.5                      | $3.5 \times 10^{-1}$    | $7.4 \times 10^{-1}$    | 275  | $-2.1 \times 10^{-1}$ | $-3.0 \times 10^{-1}$    | $3.7 \times 10^{-1}$      | $7.4 \times 10^{-1}$    | 300  |
|          | 6     | $-6.7 \times 10^{-4}$ | 1.3                      | $2.3 \times 10^{-2}$    | $-3.5 \times 10^{-1}$   | 539  | $-5.6 \times 10^{-2}$ | $-5.9 \times 10^{-1}$    | $3.2 \times 10^{-2}$      | $-3.5 \times 10^{-1}$   | 588  |
|          | 8     | $1.2 \times 10^{-3}$  | $3.4 \times 10^{-1}$     | $5.0 \times 10^{-4}$    | $1.3 \times 10^{-1}$    | 891  | $-1.0 \times 10^{-2}$ | $-6.2 \times 10^{-1}$    | $2.8 \times 10^{-3}$      | $1.3 \times 10^{-1}$    | 972  |
|          | 10    | $4.2 \times 10^{-4}$  | $6.4 \times 10^{-2}$     | $7.0 \times 10^{-5}$    | $-2.9 \times 10^{-2}$   | 1331 | $-1.2 \times 10^{-3}$ | $-3.2 \times 10^{-1}$    | $6.1 \times 10^{-4}$      | $-2.9 \times 10^{-2}$   | 1452 |
| в        | 4     | $-1.7 \times 10^{-3}$ | $8.5 \times 10^{-3}$     | $-3.6 \times 10^{-2}$   | $-5.1 \times 10^{-2}$   | 891  | $-2.9 \times 10^{-3}$ | $-4.5 \times 10^{-2}$    | $-3.8 \times 10^{-2}$     | $-5.1 \times 10^{-2}$   | 972  |
|          | 6     | $1.1 \times 10^{-6}$  | $-1.2 \times 10^{-4}$    | $-4.1 \times 10^{-6}$   | $-1.6 \times 10^{-4}$   | 1859 | $-3.7 \times 10^{-5}$ | $1.8 \times 10^{-3}$     | $-5.9 \times 10^{-5}$     | $-1.6 \times 10^{-4}$   | 2028 |
|          | 8     | $4.1 \times 10^{-7}$  | $1.0 \times 10^{-4}$     | $-9.6 \times 10^{-6}$   | $2.6 \times 10^{-5}$    | 3179 | $4.1 \times 10^{-7}$  | $2.1 \times 10^{-4}$     | $-7.8 \times 10^{-6}$     | $2.6 \times 10^{-5}$    | 3468 |
|          | 10    | $8.9 \times 10^{-8}$  | $2.3 \times 10^{-6}$     | $-1.6 \times 10^{-7}$   | $-6.2 \times 10^{-8}$   | 4851 | $1.5 \times 10^{-7}$  | $5.3 \times 10^{-6}$     | $-9.6 \times 10^{-7}$     | $-6.2 \times 10^{-8}$   | 5292 |
| 解析解      |       | 5.63157               | -32.1312                 | -8.35699                | 15.3035                 |      | 5.63112               | -32.1028                 | -8.36843                  | 15.3035                 |      |
| 厳密解      |       | 5.63544               | -31.1950                 | -8.36384                | 15.3228                 |      | 5.63544               | -31.1950                 | -8.36384                  | 15.3228                 |      |
| 備考 (観測点) |       | A-上縁                  | A-上縁                     | B-下縁                    | B-中央                    |      | A-上縁                  | A-上縁                     | B-下縁                      | B-中央                    |      |

#### 3. 数值計算例

計算モデルには, 図-3に示す長さa,幅 b,厚さhの等分布荷 重qを受ける正方形板 (a/b=1)を用いる.材 料定数は,弾性係数E, ポアソン比ν=0.3とし,



 一次せん断変形理論型要素ではせん断補正係数に k=5/6を用いる.要素分割には、平板の1/4領域を、 要素分割をせずに1要素でモデル化した Model-A、 2×2に不等分割した Model-Bを用いる.

板厚比 h/b=1/10 の周辺単純支持板に, Mindlin 要素と Reissner 要素を用いた結果を表-1 に示す.表は, Model-A, B の要素分割に対して,  $M,N=4\sim10$  次式を用いて計算した A 点 (x=a/2, y=b/2) の中央面のたわみ w, 上縁の直応力  $\sigma_x$  と, B 点 (x=a/4, y=b/4)の下縁の面内せん断応力  $\tau_{xy}$ , 中央面の面外せん断応力  $\tau_{yz}$  のそれぞれの理論による解析解に対する誤差(%)を示したものである.

表より、収束性は良好で、要素分割をしない Model-

A でも高精度の値が得られており、 $2\times 2$ に分割した Model-B ではさらに高精度の値が求められている. M=N=10 次式を用いた Mindlin 要素では w で 10 桁,応力で 8~9 桁が Mindlin 理論<sup>2)</sup>による解析解に 一致しており、Reissner 要素でも w で 11 桁,応力で 7 桁が Reissner 理論<sup>3)</sup>による解析解に一致する値が得 られている.

(%)

(%)

板厚比 h/b=3/10 の周辺単純支持板に,Lo型要素 とKant 型要素を用いた結果を表-2 に示す.高次理 論型要素でも,M=N=10 次式を用いたLo型要素で は,wで9桁,応力で7~9桁がLo理論による解析解 に一致しており,Kant型要素でもwで8桁,応力で 7~9桁がKant理論による解析解に一致している.

以上のように、各種の厚板理論と同じ変位場を規 定した本要素では、それぞれの理論解に対して極め て高精度な解が得られる.

#### 参考文献

- 1) 林 正 : ハイアラーキ有限要素法 大型要素による 高精度解析法-, 技報堂出版, 2006.
- Mindlin, R.D. : Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. App. Mech., Vol.73, pp.31–38, 1951.
  Reissner, E. : The effect transverse shear deforma-
- Reissner, E. : The effect transverse shear deformation on the bending of elastic plates, J. App. Mech., Vol.67, pp.A-69–A-77, 1945.