添接補修非可視部におけるき裂進展 FSM モニタリング

大阪大学接合科学研究所	正会員	○廣畑幹人
大阪大学大学院		峐山雄亮
大阪大学接合科学研究所	正会員	金 裕哲

1. はじめに

疲労き裂に対する添接板補修が一般に広く行われている.ところで、補修後、き裂周辺は覆われることになり、その後の目視点検ができなくなる.本稿では、添接補修非可視部におけるき裂の継続的モニタリングを対象とし、FSM(電場指紋照合法)¹⁾の適用性を検証する.

2.実験供試体および実験方法

実験供試体を図-1 に示す.

鋼板(母板)のみのものを供試体 A (図-1(a)) とし,これをモニタ リングの基準とする.これに対し,鋼板を2枚の添接板で挟んだもの を供試体 B (図-1(b);添接板長240mm,ボルト3列)および供試体 C (図-1(c);添接板長400mm,ボルト5列)とする.

ここでは、疲労き裂の進展を模擬し、ワイヤソーにより鋼板(SS400, 870×400×9(mm))に擬似き裂(幅 0.5mm)を挿入する. 擬似き裂挿入 のため、添接板中央部には窓(60×120(mm))を設けている.

擬似き裂の挿入を FSM によりモニタリングする.

FSM モニタリングにおける Pair の構成を図-2 に示す.

き裂を挟み込むように鋼板にセンシングピンを取付け, Pair 1(間隔 290mm) および Pair 2(間隔 450mm)を構成する.供試体 C の場合, Pair 1 は添接板の中に含まれるため, Pair 2 のみとなる.

3. 実験結果および考察

3.1 実験結果

実験結果を図-3に示す.

図中, 横軸はき裂挿入長さであり, 縦軸は FC 値(下式)¹⁾である. FC = $(\alpha \Delta \phi / \Delta \phi_0 - 1) \times 1000$

ここに,

α:温度,湿度変化等に対する補正係数

Δφ, Δφ, : 測定時, モニタリング開始時における Pair の電位差 供試体 A と B の実験結果を比較し, 添接板の有無がモニタリング精 度に及ぼす影響を検証する(図-3(a)).

添接板のない供試体 A の場合,き裂の挿入に伴い, Pair 1 (○印) お よび Pair 2 (●印)の FC 値がそれぞれ上昇している.

一方,長さ240mmの添接板を取付けた供試体Bの場合,添接板に電流が流入するため,供試体Aの場合に比べ,FC値が小さい.しかしながら,き裂の挿入に伴うFC値の挙動はPair1(□印)およびPair2(■
印)共に供試体Aの場合と同じである.

キーワード 疲労き裂, 添接板補修, FSM, 疲労, モニタリング

連絡先 〒567-0047 大阪府茨木市美穂ヶ丘 11-1 大阪大学 接合科学研究所 TEL 06-6879-8647

添接板を取付けた場合でも,非可視部におけるき裂の挿入 が精度良くモニタリングできることがわかった.

供試体 A, B, C (Pair 2 のみ)の実験結果を比較し, 添接 板の寸法がモニタリング精度に及ぼす影響を検証する(図 -3(b)).

供試体 B に比べ,供試体 C の添接板は大きいにもかかわら ず,き裂の挿入に伴う供試体 B (■印)および供試体 C (▲ 印)の FC 値の上昇度合いはほぼ同じである.

長さ 400mm (ボルト 5 列) の添接板を取付けた場合でも, 非可視部におけるき裂の挿入が精度良くモニタリングできる ことを確認した.

3.2 考察

添接板の長さが異なるにもかかわらず,供試体 B と供試体 C の FC 値がほぼ同じとなった理由を明らかにするため,初 期電位差および電位差変化に注目する.

供試体 A, B, C (Pair 2 のみ)の初期電位差 Δφ₀およびき 裂挿入長さ 100mm における電位差変化 (Δφ₁₀₀ と記す)を表-1 に示す.

添接板を取付けた供試体 B および供試体 C の初期電位差 $\Delta \phi_0$ は, 添接板のない供試体 A の場合の 90%, 73%となって いる.また,電位差変化 $\Delta \phi_{00}$ は 40%, 24%となっている.

添接板を取付けるとモニタリングエリアの電場は多大な影響を受ける.特に,き裂挿入に伴う電位差変化は大きく減少 することがわかった.

一方,供試体 B に比べ,供試体 C の初期電位差 $\Delta \phi_0$ および 電位差変化 $\Delta \phi_{00}$ はそれぞれ小さいが,初期電位差に対する電 位差変化の割合である FC 値はほぼ同じとなる.

いずれにせよ, FC 値の大きさではなく, その挙動に注目す ることで, 添接板非可視部におけるき裂の進展が高精度にモ ニタリングできることを結果は示唆している.

4. まとめ

添接補修非可視部におけるき裂進展のモニタリングに対す る FSM の適用性を検証するために行った一連の実験結果に

よれば, FC 値の大きさではなく, その挙動に注目することで, 添接板非可視部におけるき裂の進展が FSM により精度良くモニタリングできることがわかった.

謝辞

本研究の一部は社団法人日本鉄鋼連盟「2009 年度鋼構造研究・教育助成事業」の助成を受けて行ったもの である.また,実験では新井拓也君(研究当時 大阪大学学部生)の協力を得た.記して謝意を表す.

参考文献

 奥健太郎,有田圭介,金裕哲:電場指紋照合法による疲労き裂の発生・進展モニタリング,鋼構造論文集, 13-50 (2006), pp.35-43.

図-3 実験結果

表-1 Pair 2 の初期電位差と電位差変化

Potential difference	Specimen		
(µV)	А	В	С
$\Delta \phi_{_0}$	2545	2307	1876
$\Delta \phi_{100}$	135	54	32