光学的手法による溶接変形・ひずみ計測に関する基礎的研究

長崎大学工学部 正会員 〇出水 享 松田 浩 森田 千尋 長崎大学大学院 学生会員 上里 尚也 藤野 義裕 佐賀大学理工学部 正会員 伊藤 幸広

1. 目的

鋼構造物をはじめとして,様々な金属製構造物 の製造において,溶接技術は欠くことのできない 技術である.しかしながら,溶接とは材料を局部 的に加熱・溶融することにより,二つの材料を接 合する手法であり,そのため,不均一な熱膨張・ 収縮により必然的に溶接変形や残留応力が生じる. 特に溶接変形は不可避の問題であるが,過度な変 形は,製品の寸法精度や概観を損なうのみならず, 施工上のトラブルや,座屈強度などの性能低下の 原因ともなるため,これを精度よく把握する技術 が求められている.

そこで、本研究では、光学的全視野計測法の一 つデジタル画像相関法(以下 DICM と呼ぶ)によ り溶接中およびその冷却過程に鋼板表面に生じる 溶接変形・ひずみ計測を目的とする.

2. デジタル画像相関法

DICMとは、変形前後の測定対象物表面をデジタ ルカメラやCCDカメラ等で撮影し、画像処理するこ とで、計測範囲全体表面の変位やひずみ、応力を算 出する方法である.

本法は,測定対象物表面にランダムな模様をつけ, 測定対象物変形前後の表面の撮影画像の輝度分布から,変位を求めることができる.

計測原理は、最初に、変形前の画像中の任意の 点(1画素)を中心とした小さな画像領域(サブセッ ト:N×N pixels)を指定し基準とする(図1(a)). つぎに、この状態で、計測物に変位を与えると、変 形後の画像でのサブセットの位置が変化する.この 変形前後のサブセットのデジタル情報を比較し、基 準サブセットと変形後のサブセットの最も相関がよ いものを探し、計測点の変位を決定するものである (図1(b)).

3. 試験概要

本研究では、試験片寸法(長さ×幅×厚さ)は, 600mm×250mm×4nmのSM400A(引張強度 486N/mm², 降伏強度 375N/mm²)を用いた.今回,溶接による変 形・ひずみの基礎的性質を調べるために,溶接開先 を設けない無垢の試験片を使用した.その試験片を 立て,下端の両端を2点固定し,試験片の中央部を 薄板・軽量鉄骨溶接棒を用いてアーク手溶接を横方 向に行った.溶接は、1パスのみのとした.溶接作業 には、その道の専門の技術職員が行った.溶接条件 として,電流値 85A,電圧値 35V,溶接速度 4.5 mm/s とした.

溶接中,後における溶接面裏側の鋼表面(250mm× 250mm)に発生するひずみを解像度画素の CCD カメラ により 900mm の距離から 1 秒間隔で撮影を行った. 計測状況を写真1に示す.

写真1 計測状況

キーワード 光学的全視野計測,デジタル画像相関法,溶接変形,溶接残留応力 連絡先 〒852-8521 長崎県長崎市文教町1丁目-14 長崎大学大学院 TEL095-819-2880

4. 試験結果

DICM により得られた鋼表面の溶接中および冷却過 程における y 方向ひずみ分布を図2に示す.

 図2の(a)~(b)は溶接中,(c)は溶接完了時,(d)
 ~(f)は,溶接完了後冷却過程のひずみ分布を表す.
 図2に表しているひずみ分布は,暖色が膨張(引張) ひずみ,寒色が収縮(圧縮)ひずみを示す.図中のt は,溶接開始時からの経過時間を示す.

図2の(a)~(c)から溶接作業が進行するにつれて, アーク近傍では,アーク熱による膨張(引張)ひず みの推移が確認され,溶接が完了したビード直下で は,冷却における収縮(圧縮)ひずみの推移が確認 できる.

図2の(d)~(f)から時間の経過とともにビード 直下の上下方向に膨張(引張)ひずみが確認される. これは、アーク熱が上下方向に伝達していることを 表している.さらに(f)では、(d)に比べてその膨張

(引張)ひずみが減少している.これは、伝達した 温度が冷却していることを表している.

図2中のAB点間のy方向のひずみを図3に示す. (a)は,直前のアーク熱による膨張(引張)ひずみが 確認される.(b)以降のビード直下では,冷却による 収縮(圧縮)ひずみが時間の経過ともに増大し,(f) の時には,約8000μの収縮(圧縮)ひずみが確認さ れる.(b)では,ビード直上の上下近傍で,集中的 な膨張(引張)ひずみが確認され,時間の経過とも にその膨張(引張)ひずみが低下し上下方向に広が っていく様子が確認できる.

以上からDICMによる溶接中及び冷却過程のひずみ 分布計測の有効性が示せた。.

5. 考察

DICM により溶接中および冷却過程におけるひすみ 分布計測を行った結果以下のことが確認できた.

- ・溶接中および冷却過程におけるひずみ分布の推移 を非接触かつリアルタイムに計測ができ、ひずみ 分布の可視化を行うことができた。
- ・ビード直下では、冷却により最大約 8000 μ の収縮 (圧縮) ひずみが生じていることが確認できた.

6. 今後の予定

今後は,以下の内容について研究を進めていく. ・高温領域が測定可能な赤外線サーモグラフィ装置 により鋼板表面の温度分布計測を行い,温度と溶 接中および冷却過程のひずみの関係を調べる.

- 溶接作業を熱弾塑性 FE 解析によりシミュレート し,計測結果の妥当性を証明する.
- ・ 寸法,形状,継手形状の有無,溶接開先形状,丹
 生熱量,溶接順序,溶接パス数など各種パラメー
 ターを変化させて計測を行なう.

図 3 AB間の y 方向ひずみ