段落し補強をした RC 橋脚の曲げ・変形能補強に関する実験的研究

独立行政法人土木研究所	正会員	○張	広鋒
独立行政法人土木研究所	正会員	星隈	順一
独立行政法人土木研究所	正会員	堺	淳一

1. はじめに

道路橋の耐震補強において,主鉄筋段落し部の耐震補 強が既に実施された鉄筋コンクリート(RC)橋脚のうち, 今後の大地震に備え,柱基部の曲げ耐力の補強に伴う橋 脚全体のさらなるのアップグレード耐震補強が必要とな る場合がある.一方,アップグレード耐震補強には,従 来のRC巻立て工法や鋼板巻立て工法等が適用可能と考 えられる.一ケースとして,主鉄筋段落し部の耐震補強 に繊維材巻立て工法や鋼板巻立て工法を適用したRC橋 脚に対して,RC巻立て工法を用いてアップグレード耐震 補強を行う場合は,新たな巻立て部と主鉄筋段落し部の 既存補強部間に境界面が形成され,外力を受けて橋脚が 変形する場合は,この境界面にずれが生じることが予想 される.よって,上述のようにアップグレード耐震補強 を行う場合の補強効果を検討するため,そのずれによる 影響を把握する必要がある.

そこで、本研究では、主鉄筋段落し部の耐震補強に鋼 板巻立て工法、アップグレード耐震補強に RC 巻立て工 法を適用する場合に対して、鋼板とコンクリートの複合 構造となる橋脚の破壊挙動を確認するとともに、耐震補 強効果に及ぼす鋼板とコンクリート間のずれの影響を実 験的に検討することとしている.本論文は、実験の概要 および検討の結果を報告するものである.

2. 実験概要

実験では,昭和55年道路橋示方書より以前の耐震基準 で設計された主鉄筋段落し部を有する RC 橋脚に対して, 鋼板巻立て工法により主鉄筋段落し部の耐震補強を施し た後,RC 巻立て工法により柱基部の曲げ耐力補強を実施 した場合を想定した模型を用い,繰り返し交番載荷を実 施した.

図-1に供試体の概要図を示す.供試体は,断面は 600mm×600mmの正方形で,基部から載荷点までの高 さは3,010mm.柱主鉄筋にはSD295 D10を2段配筋し, 基部から高さ1,500 mmの位置で段落ししている. RC 巻 立て部の軸鉄筋には,SD345 D10を用い,各面に5本ず つを配筋した.鋼板巻立て部とRC 巻立て部は,橋脚全 高さに補強を実施することとし,その巻立て高さは両方

図-1 供試体の概要

図-2 実験設置状況

とも 2,400 mm とした. この高さは 4D (D: 断面幅)相 当となる. なお, 鋼板巻立て部と RC 巻立て部の設計は, 文献 1)を参考して行った. また,実橋脚の場合を想定し, 既存巻立て鋼板の塗装を除去しないとする場合における 鋼板とコンクリート間のずれの影響を検討可能にするた め,鋼板の外表面に樹脂系塗料を塗装した.

図-2に実験設置状況を示す.載荷変位は正弦波とし, 載荷速度は10mm/secとした.各載荷ステップの繰返し 回数は3回を基本とした.

3. 実験結果

実験では、載荷基準変位 δ_y を 12.7mm とし、9 δ_y まで 繰り返し載荷を行った. 図-3 に、実験終了後の供試体 の破壊状況を示す. $6\delta_y$ からは、RC 巻立て部のかぶりコ ンクリートの剥落や軸鉄筋の座屈が生じた. 実験終了時

キーワード:RC 橋脚,主鉄筋段落し部,耐震補強,鋼板巻立て工法,RC 巻立て工法 連絡先 〒 305-8516 つくば市南原1-6 (独)土木研究所構造物メンテナンス研究センター TEL 029-879-6773 FAX 029-879-6739

図-4 水平荷重-水平変位履歴曲線

では、基部付近の巻立て鋼板が外側に膨らみ、柱の主鉄 筋の破断やコアコンクリートの圧壊が確認できた.また、 RC巻立て部には、基部から約1,700 mmの範囲に数本の 水平曲げひび割れが生じ、RC巻立て部上端付近にも縦ひ び割れが生じた.

図-4に水平荷重-水平変位履歴曲線を示す.ここで, 比較するために過去に実施した無補強供試体の包絡線も 示している²⁾.ここでの無補強供試体は,図-1(a)に示 す供試体の鋼板巻立て補強前の無補強供試体と同様に設 計されたものであるが,基部の曲げ破壊を生じさせるた めに主鉄筋の段落し部を設けていない.図-4より,本 供試体は,2 δ_y から $6\delta_y$ までにほぼ同程度の耐力を維持 し,安定なループを示していることが見られる.7 δ_y から は,基部の損傷の進行によって荷重が徐々に低下した. 無補強供試体と比べ,本供試体は高い耐力と変形性能を 発揮していることが分かる.

図-5に、橋脚軸方向における RC 巻立て部 – 鋼板間, 鋼板 – 柱間に生じたずれの履歴曲線を示す.ここで、説 明の便宜上、図に示すようにずれの正と負を定義した. 図-5(a) に示す RC 巻立て部 – 鋼板間のずれにおいて、 $1\delta_y$ では、正負のずれが概ね対称し、載荷終了後の残留ず れもほぼゼロである. $2\delta_y$ から $6\delta_y$ までの結果より、載荷 変位の増加や同じ載荷ステップにおいても載荷サイクル 数の増加に伴ってずれが正の方向に増加して行くことが 見られる.これは、RC 巻立て部のひび割れ幅の増加に

よるものと考えられる. $6\delta_y$ 以降はずれの増加が殆どな かった.なお、RC 巻立て部 – 鋼板間のずれと比べ、鋼 板 – 柱間のずれが小さく、最大 0.3 mm 程度である.

一方, 図-4に示す水平荷重-水平変位履歴曲線と照 らし合わせて考察すると、2δ,から6δ,までは,載荷変 位が増加する度にずれも増加しているのに対し,水平荷 重-水平変位履歴曲線が安定なループを示していること より,本実験の場合は,耐荷性能に及ぼすずれの影響が 明確に生じていないことが分かる.これより,本実験の ように, RC 巻立て部の巻立て高さを4Dとすれば, RC 巻立て部と鋼板間にずれが生じても, RC 巻立て部による 補強効果が発揮でき,そのずれによる耐荷・変形能の低 下が明瞭に生じないことと考えられる.

4. まとめ

本研究では、鋼板巻立て工法により主鉄筋段落し部の 耐震補強が既に実施された RC 橋脚を対象として, RC 巻 立て工法を用いてアップグレード耐震補強を行う場合の 補強効果を実験的に検証した。検討の結果, RC 巻立て部 巻立て高さを 4D とした本実験の場合において,供試体 は、基部の曲げ破壊によって終局に至り、従来の無補強 RC 橋脚と同様な破壊形状を示すことが確認できた。ま た, RC 巻立て部と鋼板間にずれが生じても、耐荷・変形 能が明瞭に低下せず, RC 巻立て部による補強効果が発揮 できると考えられる。

参考文献

- (財)海洋架橋・橋梁調査会:既設橋梁の耐震補強工法事 例集,平成17年4月.
- 2)川島一彦,大塚久哲,中野正則,星隈順一,長屋和宏:曲 げ耐力制御式鋼板巻立て工法による鉄筋コンクリート橋 脚の耐震補強,土木研究所資料第3444号,平成8年5月.