側方流動抑止工に作用する外力評価

早稲田大学大学院	2 学生会員	加藤	一紀	今中	涼平	津久井	貴大
早稲田大学	フェロー会員	濱田	政則				

1.はじめに

護岸移動による地盤の側方流動を抑制する工法とし て,著者らは護岸背後に鋼矢板による地中連続壁を構 築する方法(以下,鋼矢板)と,抑止杭を千鳥状に打 設する方法(以下,抑止杭)を提案し,遠心載荷場に おける模型実験にて共に地盤の水平変位,鉛直変位の 抑制効果が高いことを示した.本文はこれらを実地盤 での対策に活用するため,抑止工に作用する外力の評 価法に関して得られた結果を報告する.

2. 遠心載荷場における模型実験の概要

控え工付矢板式護岸と,模型地盤(上から埋立土の 不飽和層,液状化層,基盤層)を作製し,護岸背後10 m位置に対策工(鋼矢板,抑止杭の一列目)を設置し, 遠心加速度50Gで護岸の流動実験を行った.実地盤と 模型地盤の諸元を表1に,抑止工の実物と模型の諸元 を表2に示す.以下,図中・表中の寸法は重力場換算 とする.

表1	地盤の諸元
----	-------

	実地盤			模型地盤			
地盤種類	構成			構成		古堂刻舟ころ	
	土質	層厚(m)	N値	材質	層厚 (mm)	相对密度DF (%)	
不飽和層	埋土(不飽和)	2.2	5	ケイ砂4号	40	70	
液状化層	埋土(飽和)	2	5		240	50	
	砂皙土	10	15	21112/5			

	実物		模型			
対策工法	/L+ *	曲げ剛性EIp	/L +¥	曲げ剛性EIm		
	1工依	$(kN \cdot mm^2)$	江惊	$(kN \cdot mm^2)$		
鋼矢板	SP- L型	1.72×10^{14}	<u>材質</u> 鋼鉄 板厚(mm) 4.5	3.04 × 10 ⁷		
抑止杭	<u>材質</u> ステンレス 直径(mm) 1000 肉厚(mm) 25	1.91 × 10 ¹²	<u>材質</u> ステンレス 直径(mm) 20 肉厚(mm) 0.5	3.06 × 10 ⁵		

表 2 対策工の諸元

また抑止杭については表3の配置図に示すように杭 間隔と配置を変えた計6ケースの実験を行った.表中 杭間隔は隣接する杭の中心間隔を示し,Dは杭の直径を 示している.

表 3 抑止 机美敏ケース 一覧						
	正三角形	列間1/2	一列配置			
杭間隔	• • •	• • •				
	• •	••				
4D(一列は2D)	case1A	case2A	case3A			
6D(一列は3D)	case1B	case2B	case3B			

キーワード 液状化、側方流動、矢板護岸、遠心実験、抑止杭

連絡先 〒169-8555 東京都新宿区大久保 3-4-1 早稲田大学 濱田研究室 TEL03-3208-0349 E-mail ikki-kato-4869@ruri.waseda.jp

3. 鋼矢板に作用する外力の評価

図1に鋼矢板上下流の沈下量と過剰間隙水圧比を示す. 図1(a)より鋼矢板によって上流と下流が仕切られている ため,護岸の流動に伴い下流側が大きく沈下していること が分かる.また図1(b)より上流は過剰間隙水圧比が1 付近まで達しているが,下流の地盤の流動により過剰間隙 水圧の上昇が抑えられていることが分かる.

連続壁で仕切られている影響で上下流の液状化度合が 異なるため図2に示すような外力の評価モデルを考えた。

地中壁の外力は,埋土(不飽和層)の上下流側から, 沈下量の差を考慮した静止土圧と,地下水位以下の液 状化層からは間隙水圧 u+ u と有効応力残留分 _vu の静止土圧が作用すると仮定している.

静止土圧係数 K=0.5 で計算したモーメントと, 鋼矢 板基部(地表面から13.25mの位置)のひずみより得られ たモーメントの実験値との時刻歴比較を図3に示す.

鋼矢板に作用するモーメントを比較すると実験値がやや 計算値を上回っているが,実験値と計算値は概ね良好な 一致を示しており,図2に示した外力の評価モデルは適切 であると考えられる.

4.抑止杭に作用する外力の評価

図 4 に表 3 に示した各ケースで設置した杭の基部モ ーメントの合計値を示した.杭の配置や間隔によらず, 地盤幅 20mあたりに設置した本数が同じ場合,モーメ ント合計値が同程度になることがわかる.

図 5 に case1A における抑止杭上下流の沈下量と過 剰間隙水圧比の時刻歴を示す.

連続壁の場合と同様,抑止杭上下流で沈下量ならび に過剰間隙水圧比に差が生じていることが分かる.図4, 図5の結果に着目し,杭群および杭間の地盤を一体と 捉え,鋼矢板での外力の評価モデルと同様の外力の評 価モデル(図6)を考えた.

埋土(不飽和層)の上下流側から,沈下量の差を考慮した静止土圧と,地下水位以下からは間隙水圧 u+ u,液状 化層からは有効応力残留分 _v- u の静止土圧が作用 すると仮定している.

図7に case1A の実験値と,静止土圧係数 K=0.5 で 計算した外力値の時刻歴を比較したものを示す.

実験値と計算値の最大値が概ね一致することがわかる.時間が経過しても実験値が減少しない理由として, 杭の復元力に対し,剛性が回復した杭周辺の液状化層 が抵抗したことが考えられる.

図 8 に全ケースにおける杭基部モーメントの実験値 と計算値の最大値を比較したものを示す.実験値と計 算値の最大値は概ね一致しており図 6 に示した外力の 評価モデルは適切であると考えられる.

5.まとめ

・抑止工に作用する外力は,鋼矢板や杭を設置した上 下流における間隙水圧と,有効応力残留分の静止土 圧の和で評価出来る.