溶接未溶着を有する鋼厚肉部材の延性き裂発生に関する実験的研究

名城大学	正会員	○鈴木	俊光
大成建設	正会員	小野	恵亮
名城大学	正会員	葛	漢彬

1. はじめに

1995 年1月に発生した兵庫県南部地震では多くの建築構造物をはじめ、鋼製橋脚においても過去に経験し たことのない甚大な被害を受けた.中でも神戸ハーバーハイウェイ P75 橋脚の隅角部においては脆性的な破 壊モードが確認された¹⁾. 以降,鋼構造物に対する地震時挙動,破壊に関する研究が多く行われてきたが,近 年,溶接構造物の施工時における溶接不具合(欠陥)の内在が問題視されてきており,これらの構造物は地震 などの強力な外力を受けた場合にどのような破壊モードを呈するについては、土木構造物、特に鋼製橋脚を対 象とした研究は今までにほとんど行われてない.本研究では鋼厚肉部材の溶接の溶込深さに着目し、地震時に おける破壊性状に及ぼす影響を明らかにすることを目的とする.

2. 実験供試体

供試体は鋼製橋脚隅角部の梁・柱接合部を模擬した構造とした。梁・柱交差部の十字継手は本来完全溶込(F. P.)溶接であるが、本実験ではこの十字継手に未溶着を設け、溶接溶込深さが地震時の破壊性状に与える影響 を比較することとした.三線交差部ならびに十字継手の溶接部は、未溶着によりき裂発生を確認するためにビ ード表面からのクラックを防止すること考え溶接部を滑らかに仕上げた.供試体の材質は SM490YA、板厚は 12mm, 柱の幅厚比パラメータ Rf は 0.25 である.供試体名の S25 は幅厚比パラメータ,次の 0~5 の数字は十 字溶接部の未溶着高さ a, CC, VC は載荷パターンを示し, CC は定振幅載荷($\pm 10 \delta y$ もしくは $15 \delta y$), VC は δ y を基準とした1サイクル毎の漸増振幅載荷を表す. ここにδ y は柱としての降伏変位である. なお, 実験 供試体は鋼製2層ラーメンの梁・柱接合部を想定しており,図-2における供試体図の柱部は実橋脚では横梁, 梁部は柱となる.

図-1 実験載荷装置

表-1 供試体寸法一覧														
供試体名	h	h_{1}	h_2	h ₃	h _b	L	L_1	L_2	L_3	В	D	t	R	а
S25-0-CC	708	227	240	246	136	858	181.5	164	16	149	149	11.84	29	0
S25-2-CC	705	227	240	246	137	858	181.5	164	16	149	148	11.84	28	2
S25-2-VC	706	227	240	246	137	858	181.5	164	16	149	148	11.84	28	2
S25-5-CC	705	227	240	246	137	854	181.5	164	16	149	148	11.84	31	5
\$25-5-VC	705	227	240	246	138	857	181.5	164	16	149	148	11.84	28	5

3. 実験方法

漸増振幅載荷および定振幅載荷のパターンを図ー3 に示す.No. 1,No. 2 が定振幅載荷(±15δy,±10δy),

キーワード 隅角部,溶接溶込深さ,未溶着,延性き裂

連絡先 〒468-8502 名古屋市天白区塩釜口 1-501 名城大学理工学部建設システム工学科 TEL 052-838-2342

No.3 が漸増振幅載荷である. 自定式の載荷フレームに載荷供試体をセットし、アクチュエーター(±1,000KN) にて変位を与えた. なお,設計上の降伏水平荷重 Hy は 138.6KN,降伏変位 δ y は 5.82mm である.

4. 実験結果および考察

各供試体におけるき裂発生点の一覧を表-2 に示す.なお、定義上のき裂発生点は文献 2)により求めた.図 -4には実験で得られた荷重-変位履歴曲線の一覧を示す.図-4を見ると、溶接溶込深さの違いによる履歴ルー プの差に大きな違いは見られなかった.また、S25-0-CC,S25-2-CCのき裂発生時期については1ハーフサイ クルの差はあるが, 2mm の溶込深さの差による大きな違いは確認できなかった. S25-2-VC と S25-5-VC の比較 では, S25-5-VC は4 ハーフサイクル早く発生しているがこれは S25-2-VC では柱中間部の溶接欠陥からき裂が 発生したためである. 写真-1 は隅角部近傍のき裂発生状況である. S25-0-CC, S25-2-CC はフィレット上端か らき裂が発生し、S25-5-VC では十字溶接未溶着部内部からき裂が進展した.よって未溶着の高さによっては 最も応力レベルの高い三線交差部近傍から地震時の破壊起点となる可能性がある.なお、詳細な検討について は今後更なる実験と解析により地震時の破壊挙動について検討を重ねていく予定である.

表-2 き裂発生点一覧

	供試体	実験でのき	•裂発生点	定義上での	のき裂発生点	載荷パターン	
	S25-0-CC	+9δy(6 H	Half Cycle)	5 Ha	lf Cycle	No.1	
	S25-2-CC	+1δy(5 H	Half Cycle)	4 Ha	lf Cycle	No.1	
	S25-2-VC	−7δy(14	Half Cycle)	13 Ha	alf Cycle	No.3	
	S25-5-CC	–10δy (12	Half Cycle)	11 Ha	alf Cycle	No.2	
	S25-5-VC	-9δy(18	Half Cycle)	17 Ha	alf Cycle	No.1	
2 	Δ- -5 0 5 10 δ / δ y	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- S25-5-CC - S25-5-CC 	10 10 5 10 10 10 10 10 10 10 10 10 10	2 	VC VC VC VC VC VC VC VC VC VC VC VC VC V) 15
	S25-0-C			S25-2-CC		S25-5-V	C

写真-1 隅角部近傍のき裂発生状況

参考文献

1) 岡下ら:兵庫県南部地震による神戸港港湾幹線道路 P75 橋脚隅角部におけるき裂損傷の原因調査・検討,土木学会論文集, No.591/I-43, 243-261, 1998.4. 2) 葛ら:鋼製厚肉断面橋脚における延性き裂発生の評価に関する実験的および解析的研究,構造 工学論文集,Vol.55A,pp.605-616,2009年3月.