DO 改善用管内曝気式気体溶解装置の処理流量の定量評価

山口大学 理工学研究科	フェロー会員	○羽田野	袈裟義
山口大学 大学院	学生会員	大 木	協
(有)バブルタンク	非会員	藤 里	哲 彦
新光産業(株)	非会員	馬	駿
(株)日本港湾コンサルタント	非会員	福 本	裕 輝

1. 緒言

著者らは、湖沼の貧酸素化によって底泥から溶出 した重金属や栄養塩が人体や水棲生物の体内に摂取 される事態を避けるため、DO 改善用管内曝気式気 体溶解技術(h型気体溶解装置)を研究開発している.

この装置の酸素溶解能力(単位時間当たりに溶解 できる酸素質量)は処理流量に大きく依存する¹⁾. そ こで,処理流量の定量評価を試みる.

2. h 型気体溶解装置の原理

図-1にh型気体溶解装置の中核部分の模式図を示 す. 貧酸素水と連通して水中に鉛直に立てたh型の 筒状体の中に設置したエアストーンから気泡を発生 させると,気泡は周囲の水を連行しながら上昇し, 水は筒の曲がり部で気泡集合体となり効率的に気体 溶解を行う.気体溶解処理された水は筒の水平部を 通って鉛直の直管部に送られ,下方に排出される.

h 型筒状体の両方の鉛直部にホースを接続すると, 水面下の浅い位置で散気して深部の水を吸引するの で,省エネルギーである.また,水の吸引と排出を 任意の位置で行うことができる.

3. 処理流量の計算方法

処理流量の計算の基礎式として,エアリフト設計の基準として用いられているエネルギー式(式(1))²⁾を用いた.図-2はパラメータの説明図である.

$$W_a P_a v_a \log(P_s/P_a) = W_w (h_d + h_f + h_v + h_b) \qquad (1)$$

ここで、 W_a は1秒間に消費される空気重量、 P_a は大 気圧、 v_a は大気圧での比容積、 P_s は吸入管入口での 空気圧、 W_w は1秒間の揚水重量、 h_d は揚水高さ、 h_f は($h_d + h_s$)間の摩擦損失水頭、 h_v は二相流の吐出部 での速度水頭、 h_b は曲がりによる損失である.

以下では,式(1)から処理流量 *Q_w*を求める過程を 示す.まず,変数を処理流量 *Q_w*で表現する式を導 き,その結果の式を変形して処理流量 *Q_w*に関する 3

キーワード: 貧酸素, DO 改善, 気体溶解, 管内曝気, 気泡集合体 連絡先:〒755-8611 山口県宇部市常盤台 2-16-1 山口大学工学部社会建設工学科 Tel:0836-85-9353

図-1 h 型気体溶解装置の中核部分

図-2 パラメータの説明図

次方程式を導き,これを数値的に解く.以下,この 手順を3.1~3.3に示す.

3.1. 処理流量 Q_w を用いた表現式³⁾

式(1)の各パラメータの内,処理流量 Q_w を含むパ ラメータは右辺の W_w , h_f , h_v , h_b であり,これらはそ れぞれ次式(2)~(5)のように表わされる.

$$W_w = \rho \, g Q_w \tag{2}$$

$$h_f = \frac{f(h_d + h_s)\left(\frac{Q_g + Q_w}{A}\right)^2}{2gD}$$
(3)

$$h_{v} = \frac{\left(\frac{Q_{g} + Q_{w}}{A}\right)^{2}}{2g}$$
(4)

-43-

$$h_b = \zeta_{b1} \zeta_{b2} \frac{\left(\frac{Q_g + Q_w}{A}\right)^2}{2g} \tag{5}$$

ここで、 ρ は水の密度、gは重力加速度、f は摩擦損失 係数、 h_s はエアストーン深度、 Q_g は空気流量、A は管 断面積、D は管直径、 ζ_{b1} は中心角が90°の場合の曲がり 損失係数、 ζ_{b2} は中心角が90°の場合との損失比である.

3.2. 処理流量 Q_wの式

式(2)~(5)を式(1)の右辺に代入し,処理流量 Q_wについて整理する.この時,式(1)の右辺は,

式(1)右辺 =

$$\rho g Q_{w} \left[h_{d} + \frac{f(h_{d} + h_{s}) \left(\frac{Q_{g} + Q_{w}}{A} \right)^{2}}{2gD} + \left(\frac{Q_{g} + Q_{w}}{A} \right)^{2}}{2g} + \zeta_{b1} \zeta_{b2} \left(\frac{Q_{g} + Q_{w}}{A} \right)^{2}}{2g} \right] \right]$$

$$= \frac{8\rho}{\pi^{2} D^{5}} \left\{ \left\{ f(h_{d} + h_{s}) + (1 + \zeta_{b1} \zeta_{b2}) D \right\} Q_{w}^{3} + 2Q_{g} \left\{ f(h_{d} + h_{s}) + (1 + \zeta_{b1} \zeta_{b2}) D \right\} Q_{w}^{2} + \left[\frac{gh_{d} \pi^{2} D^{5}}{8} + \left\{ f(h_{d} + h_{s}) + (1 + \zeta_{b1} \zeta_{b2}) D \right\} Q_{g}^{2} \right] Q_{w} \right\}$$
(6)

式(1)の左辺を右辺に移項し、*Q*wについて整理すると次の*Q*wに関する3次方程式(式(7))を得る.

 $0 = \alpha Q_w^3 + \beta Q_w^2 + \gamma Q_w - \delta \tag{7}$

ここで, α , β , γ , δ は次のようである.

$$\alpha = \frac{8\rho}{\pi^2 D^5} \{ f(h_d + h_s) + (1 + \zeta_{b1}\zeta_{b2}) \} D$$

$$\beta = \frac{16\rho Q_g}{\pi^2 D^5} \{ f(h_d + h_s) + (1 + \zeta_{b1}\zeta_{b2}) D \}$$

$$\gamma = \rho g h_d + \frac{8\rho}{\pi^2 D^5} \{ f(h_d + h_s) + (1 + \zeta_{b1}\zeta_{b2}) D \} Q_g^2$$

$$\delta = \vec{x}(1) \pm \vec{D}$$

3.3.3次方程式の計算³⁾

式(7)の3次方程式を解く.摩擦損失係数fはマニ ングの式から計算を行った.また、実験で使用した 装置は、直径 0.05(m)の新しい塩化ビニル管であるこ とから、D = 0.05(m)、粗度係数n = 0.012として計算 を行った.また、曲がりによる損失係数は、曲り部 の中心角(90°)、曲率半径(0.025m)より、 $\zeta_{b1} = 0.33$ 、 ζ_{b2} = 1.0を与えて計算を行った.

4. 実験及び計算条件

実験及び計算条件を表-2 に示す. 条件の組み合わ せは 60 通りである.

表-2 実験及び計算条件

管直径	D	(mm)	50
揚水高さ	h_d	(mm)	20, 50, 80, 110, 140
エアストーン深度	h_s	(mm)	140 , 230 , 320
空気流量	Q_g	(L/min)	10, 20, 30, 40

5. 計算及び実験の比較

計算値と実験値の比較結果の一例を図-3 に示す. 図より,両者の傾向は類似しているが,計算値は過 大評価であった.これは,他の全ての条件において も同様の結果であった.この原因として,気液二相 流であるにも関わらず ρ に水の密度を用いたこと, 損失の与え方が適切ではないことなどが挙げられる. 明らかに本装置の流れでは損失は摩擦損失よりも大 きいはずであり,損失の過小評価が処理流量の過大 評価として表れていると考えられる.

図-3 処理流量の計算値と実験値

6. 結語

以上,本研究では*DO*改善用管内曝気式気体溶解 装置の処理流量*Q*_wの定量評価を試みた.

処理流量 Q_w を求める式として式(7)を得た. Q_w の 計算値は実験値と近い傾向を示したが,値としては 過大評価であった.今後,二相流の効果を加味し, 更に損失を適切に評価して,より予測精度を高める 必要がある.

参考文献

- 福本 裕輝:h 型気体溶解装置の性能に関する実験的検討,山口大学修士論文,2008
- A.J.ステパノフ 著,今市 憲作 他 訳:ポンプと ブロワ 二相流を中心に,産業図書
- 3) 椿 東一郎:水理学 I, 森北出版