約80年間供用されたRCT桁橋の切り出し桁の損傷状況および残存耐荷力評価

セントラルコンサルタント(株)	正会員	伊藤 寛治	福岡大学	正会員	渡辺 浩
九州大学大学院	フェロー会員	日野 伸一		正会員	山口 浩平

1. はじめに

図-1に示す対象橋梁は昭和5年にRC構造の旧橋部,道路拡幅の ため昭和49年にPC構造の新橋部が架設されている.全長205m,6 径間3連単純T桁橋(RC部),3径間ポステンT桁橋(PC部)とな っており,道路拡幅後はRC構造の旧橋部を歩道橋,PC構造の新橋 部を車道橋として利用されてきた.本橋は砂州上に架設された橋 梁で,昭和43年に断面補強がなされている.干潮時は砂浜である が満潮時には橋脚下部まで海水面となる,塩害が厳しい環境に置 かれてきた.平成19年に腐食状況を把握するため調査¹⁾が行われ, 本橋の架け替えが決まり,平成20年春の解体された.本橋では, 約80年間供用され,断面補強も行われた橋梁より切り出した桁に ついて桁の損傷状況の把握をするとともに,載荷試験を行い,桁 の残存耐荷力を評価した.

2. 損傷状況調査

図-2に試験体断面,図-3に試験体側面および断面図を示す.

試験体は全長 8400mm,高さ970mmのT形断面のRC桁である. この桁は,昭和43年の道路橋示方書の改定に伴い,上面をコンク リート,フランジ下面からウェブ側面,ウェブ下面にかけてを吹 付けモルタルで増厚補強されている.その際,既設引張鉄筋 25 の2段の丸鋼に加え,最下段に異形鉄筋D29が補強配置されている.

図-2 試験体断面

キーワード 損傷状況,残存耐荷力,断面増厚補強

〒104-0042 東京都中央区入船1丁目4番10号 セントラルコンサルタント株式会社 TEL 03(5117)1061

図-3(a)の赤線の範囲は増厚モルタルの剥離箇所であり,実線は 南面,破線は北面の剥離箇所を表している.同図(b)に示すよう に,サーモグラフィを用いて桁の損傷状況調査を行った結果,調 査を夜中に行ったため熱の供給がされにくく,低温度の領域が損 傷箇所として計測された.また,同図(c)に示すように,レーダ 探査による調査では3段に配置された鉄筋,スターラップおよび網 筋がはつり調査で観察された配筋状況と同様であることが確認さ れた.同図(d)に示すように,目視および打音法による調査結果 はサーモグラフィによる調査と比較して,増厚部の浮きや表面の ひび割れ箇所が同様であった.

3. 残存耐荷力試験

3.1 試験方法

試験はスパン8000mm,等曲げモーメントスパン2000mmで4点曲 げ漸増載荷試験を行い,たわみ,コンクリートおよび鉄筋のひず み,ひび割れ幅,増厚モルタルの剥離状況を計測した.表-1に材 料特性値を示す.

3.2 結果および考察

図-4に荷重-たわみ関係を示す.試験体は1000kN付近でせん断 ひび割れが上面のコンクリートに達して既設コンクリートと上面 コンクリートの剥離が発生し, せん断破壊した.表-2に計算値と 実験値の比較,図-5に計算値算出の際に定義した既設断面と補強 断面を示す.ここで既設断面の計算値は,補強されている増厚部 を除き、既設コンクリート部のみで最下段の異形鉄筋は含まずに 算出した.補強断面の計算値は,上面増厚コンクリートおよび増 厚モルタル部を考慮して算出した.この際,曲げ終局荷重は,上 面のコンクリートが高強度であるため,終局ひずみを0.0025とし て算出した²⁾.同表に示す通り,補強断面の計算値は実験値を良く 再現できている.設計荷重は最下段鉄筋の許容引張応力度 140N/mm^{2 3)}時の荷重であり,実験値は551kNである.降伏荷重は 最下段鉄筋の降伏強度339N/mm²時の荷重であり,実験値は800kN である.補強断面の計算値の方が実験値と概ね等しいことから, 既設部と増厚補強部は終局に至るまで補強断面として合成挙動を 示していたと考えられる.

4. まとめ

約80年供用された橋梁から切り出したRCT桁の損傷状況調査および残存耐荷力試験を行った結果,以下のことが明らかになった.

- 1)損傷状況調査では、レーダ探査やサーモグラフィ調査により配筋状況および剥離箇所が概ね確認できた.
- 2) 試験体は上面コンクリートと既設コンクリートの剥離を伴うせん断破壊であった.
- 3)終局に至るまで増厚補強部と既設部は補強断面として挙動を示し、また曲げおよびせん断挙動の計算値は実験 値と良く一致した。

参考文献

1) 福岡市: 福岡市既設解体橋梁詳細調查業務委託報告書, 2008.3

- 2) 大和竹史:鉄筋コンクリート構造,共立出版㈱, pp.21, 1999.1
- 3)日本道路協会:道路橋示方書·同解説[共通編],2002.3

謝辞

本研究は九州橋梁・構造工学研究会(KABSE)の分科会活動の一環であり,九州建設弘済会研究助成事業の補助を受けました.また,載荷試験,損傷状況調査にご協力頂いたオリエンタル白石㈱の関係各位,メンテナンスソーシャル街の浅利氏および九州大学大学院の小林憲治氏,大本透氏に感謝の意を表します.

表-1 材料特性值

(a)	コンクリ				
	ヤング係数	圧縮強度	ポマリンド		
	(kN/mm^2)	(N/mm^2)	ホアノノに		
上面増厚コンクリート	48.8	97.5	0.28		
既設コンクリート	25.1	27.4	0.18		
下面増厚モルタル	37.5	116	0.25		
(b)鉄筋					
	ヤング係数	隆伏強度	引張強度		

	ドノフ 示奴	阵闪迅反	コリズ辺反	
	(kN/mm ²)	(N/mm^2)	(N/mm^2)	
2,3段目鉄筋(25)	187	222	344	
最下段鉄筋(D29)	201	339	533	

表-2 耐力比較

	実験値 (kN)	設計値 既設新面	≦ (kN) 補強断面	実験値/ 設計値(補強断面)
ひびわれ Pcr	300	77	283	1.06
設計 Pd	551	256	303	1.82
降伏 Py	800	605	734	1.09
曲げ終局 Pu	-	647	1046	-
せん断 Pv	1014	623	1048	0.97

