PC 多径間連続ラーメン橋の柱頭部に関する検討

| (独)鉄道・運輸機構 | 清水健志 | (独)鉄道・運輸機構    |      | 徳永潔計 |
|------------|------|---------------|------|------|
| (独)鉄道・運輸機構 | 石徳隆行 | (独)鉄道・運輸機構 (  | ○正会員 | 進藤良則 |
| (独)鉄道・運輸機構 | 石井秀和 | (株)復建エンジニヤリング | 正会員  | 栗山亮介 |

#### 1. はじめに

PC ラーメン橋は、支承部が無いため耐震性に優れた構造であるが柱頭部において主桁、隔壁および橋脚が3次元的に結合するため立体的な応力が発生する. 柱頭部に生じる正確な力の流れを解析するには、立体 FEM などを行う必要があるが煩雑であるためディープビームによる簡易的な方法(以下、「簡易手法」という)により補強鉄筋量を求めている<sup>1)</sup>. 簡易手法ではウェブに作用するせん断力の一部を横桁に伝達し、これを橋軸直角方向の引張力に換算することで補強鉄筋量を求めるが間接的な手法のため不明瞭な点もある. また、桁上縁の PC 鋼線が多く配置される部分に補強鉄筋が密に配置されるため、これを低減し施工性を改善する課題もある. そこで本研究では、横桁の上面側補強鉄筋量について簡易手法と立体 FEM の結果を比較する試みを行った.

#### 2. 簡易手法による算定

簡易手法により柱頭部に生じる横方向応力度は、次の手順で算出される. 記号については図-1による.

- ① 柱頭部に作用する断面力(N,M,S)を主桁各部材に作用する軸力(Nw,Nso,Nsv)とせん断力Swに置き換える(図-1(a)).
- ② ウェブに作用するせん断力 Sw の一部は隔壁に Sw'として伝達されるものとし、ディープビームによる解析から隔壁(横桁)の水平方向応力度を算出する(図-1(b)).
- ③ 底板に作用する軸力差 ΔNsv はウェブを通じて伝達されるものとし、ディープビームによる解析から底板の橋 軸直角方向応力度を算出する(図-1(c)).

ディープビームの解析による補強鉄筋量は、ウェブ間隔 L と梁高 d を既知とし、L/d の値より図-2 に記す内的 アーム長 Z/d より Z を求め、続いて換算引張力 Z/pL より分布荷重 p を求めることで縁応力度  $\sigma_{u},\sigma_{o}$ が算定される.



キーワード: PC ラーメン橋, 柱頭部, ディープビーム, FEM 連絡先:〒231-8315 横浜市中区本町6-50-1 TEL:045-222-9082 FAX:045-222-9102

# 3. FEM による算定

### (1) 解析条件

解析モデルは実際の新幹線橋梁(上床版幅 11.76 m, 桁高 d =6.5m, ウェブ間隔 L=5.5m, ウェブ厚 0.9m, 横桁幅 6.2m) とし、コンクリートの物性値は、弾性係数 2.65×10<sup>7</sup>kN/m<sup>2</sup>、ポ アソン比 0.167,単位体積重量 24.5kN/m<sup>3</sup>,境界条件は橋脚下 端部を拘束状態とした、メッシュ間隔は、幅方向 200mm、鉛 直方向 200mm, 長さ方向 310mm のソリッド要素とした. な お,鉄筋および PC 鋼材はモデル化していない.

(2) 載荷方法

横桁全厚に作用する荷重は,実際の設計で 算出されたウェブに作用するせん断力の合計 値 53492kN とした. Casel はウェブ位置のス ラブ上面に平面荷重として載荷する方法, Case2 は線路方向の荷重が桁部と柱頭部の付 根にせん断力が作用するものと想定しウェブ 全面に載荷する方法とし、梁高スパン比 L/d =1.0, 1.5, 2.0 について行った (図-3).

# 4. 算定結果

図-4 に L/d=1.0 の場合の FEM による線 路直角方向, スラブ上面最大主応力コンター および深さ方向に作用する最大主応力を示す.

次に、引張力について簡易手法と FEM を 比較した結果を表-1 に示す. Case1, Case2 の L/d=1.5, 2.0 の場合と Case2 の L/d=1.0 の場合で、引張力は FEM よりも理論値の方 が大きい. また, Case2 よりも Case1 の方が引 張力は大きかった. A-A 断面の応力分布で は Case1 は 1.6 m 以深で圧縮応力が発生する が Case2 では開口部まで引張領域となった.

| 表─1 列張刀の比較 (単位:KN) |           |         |         |         |  |  |
|--------------------|-----------|---------|---------|---------|--|--|
| 梁高スパン比 L/d         |           | 1.0     | 1.5     | 2.0     |  |  |
| 理論値(簡易手法)Vcal      |           | 9, 194  | 13, 331 | 17, 469 |  |  |
| Case1              | 最大主応力 VI  | 10, 800 | 11, 442 | 12, 171 |  |  |
|                    | X 方向応力 Vx | 10, 800 | 11, 442 | 12, 171 |  |  |
|                    | Vx/Vcal   | 1.17    | 0.86    | 0.70    |  |  |
| Case2              | 最大主応力 V I | 5, 757  | 9,610   | 11, 234 |  |  |
|                    | X 方向応力 Vx | 6, 563  | 10, 521 | 11, 594 |  |  |
|                    | Vx/Vcal   | 0.71    | 0.79    | 0.66    |  |  |





図-3 FEM 解析モデルと載荷方法



# 5. まとめ

横桁に作用する引張力について簡易手法と FEM による結果を比較して L/d が 1.5 以上の場合には、補強鉄筋量を 低減できる可能性があることが分かった. 本研究の検討結果より FEM の載荷位置等によって発生応力に差異が認 められたため、更に詳細な検討を行う考えである.また、底板の補強鉄筋量についても検討を行う考えである.

# 参考文献

1) プレストレスト・コンクリート建設業協会: PC 多径間連続ラーメン橋に関する研究報告書, 1988.5.