ねじり変形が生じる3室箱桁断面を有するRC部材の力学特性に関する研究

九州大学大学院工学府 学生会員 陶媛媛 九州大学工学部 学生会員 筬島 隆司 九州大学大学院工学研究院 フェロー 大塚 久哲 西日本高速道路株式会社 正会員 福永 靖雄

1. 目的

上路式RCアーチ橋が地震力を受けた場合,アーチリブには,軸 カ・曲げモーメントに加えて大きなねじりモーメントが生じる ことになるため,ねじりモーメントに対する照査が必要となる. 実橋梁におけるアーチリブの断面形状は,地震動が作用する時 の慣性力を軽減するため,中空断面が採用されることが多い.

本文では、ねじりを受ける中空断面 RC 部材の力学特性を明 らかにするために、既設 RC アーチ橋のアーチリブを対象とし た3室箱桁断面の縮尺供試体を製作し、一定軸力下で、純ねじ り正負交番載荷試験、および、曲げとねじりが作用する複合荷 重交番載荷試験を行った.

2. 対象橋梁および検討ケース

(1) 対象橋梁

対象橋梁は,昭和55年道路橋示方書を適用して設計されたア ーチ支間長235mの大規模な上路式 RC アーチ橋である.

(2) 検討ケース

供試体の概略と断面寸法を図-1 に示す.本文では,供試体断面の長辺をフランジ,短辺をウェブと呼ぶ.主鉄筋および帯鉄筋は SD295A,径 D6 を用いた.また,炭素繊維シートは一般的に用いられる繊維目付け 200g/m²を用いた.

検討ケースを表-1 に示す. 軸力は全ケース 8N/mm² (コンク リート配合強度の 20%相当) である. 帯鉄筋間隔に関して, 供 試体 No.1,3 は対象橋梁の一番密な帯鉄筋比と一致させた ctc60, No.2 はその倍の帯鉄筋間隔を持つ ctc120, No.4 は ctc60 に炭素 繊維を巻き, ctc30 程度に補強したものである. 載荷タイプは, 純ねじり載荷を行う No.1,2.4 と, 実橋相当の断面力の発生状況 を再現するための複合載荷(ねじり卓越)を行う No.3 である. 載荷比率の角度 φ のイメージを図-2 に示す ¹⁾.

コンクリートの材料試験結果を表-2 に示す.引張強度は参考 文献 2) より, 圧縮強度をもとに求めている.

3. 実験結果および考察

(1) 荷重-変位関係

ねじり履歴曲線を図-3~6 に, 複合載荷時の曲げ履歴曲線を 図-7 に示す. また, ねじり包絡線を図-8 に示す.

キーワード 3 室箱桁断面 ねじり荷重 力学特性

連絡先 〒819-0395 福岡市西区元岡 744 ウエスト 2 号館 11 階 1101 号室 TEL: 092(802)3374

図-1 供試体寸法(単位:mm)

表-1 検討ケース

供試体	軸力	帯鉄筋間隔	目標載荷比率	
No.	(N/mm^2)	ctc (mm)	載荷比率	載荷タイプ
1		60	90°	純ねじり
2	0 0	120	90°	純ねじり
3	0.0	60	60°	ねじり卓越
4		30 ^{**}	90°	純ねじり

※帯鉄筋+炭素繊維の換算帯鉄筋間隔

表-2 コンクリート材料試験結果

ケース No.	圧縮強度 (N/mm ²)	引張強度 (N/mm ²)	弾性係数 (N/mm ²)
1	52.4	3. 2	24.8 \times 10 ³
2	47.3	3.0	24. 2 \times 10 ³
3	39.9	2.7	20.8 \times 10 ³
4	61.1	3.6	27.7 \times 10 ³

帯鉄筋間隔の比較(No.1,2)では,部 材降伏後,帯鉄筋比が大きいNo.1では, 帯鉄筋比が小さいNo.2に比べ,最大耐 力は大きく,その後の荷重の低下も緩 やかである.また,No.2 は最終的にひ び割れが一箇所に卓越し,その箇所の 主鉄筋が軸力の影響で座屈して耐力が 低下した.複合載荷を行ったNo.3は, 曲げの影響によりねじり耐力は小さく なった.炭素繊維補強を施したNo.4 は

なった.炭素繊維補強を施した No.4 は、最大耐力まで2次勾配が直線的に増加した.

(2) 剛性比の低下および等価減衰定数

剛性比の低下と塑性率の関係を図-9,等価減衰定数と塑性率の関係を図-10 に示す.剛性比は、帯鉄筋間隔が大きいほど、また曲げ荷重がある場合に対し、早く低下する.等価減衰定数は、 No.1,2,3 はひび割れ進展に伴い徐々に上昇するが、炭素繊維補強を施した No.4 は破壊前まで安定しており、その値も 0.1 を下回っていた.

(3) 最終破壊状況

写真-1 にフランジの最終的な破壊性状を示 す.帯鉄筋比が小さい No.2 は,ねじりによる ひび割れ卓越箇所で,軸力の影響により破壊し た.No.3 では,基部側のウェブが曲げ・軸力の 影響で圧壊して耐力が低下した.炭素繊維補強 を施した供試体は,最大耐力後の炭素繊維剥離 により脆性的に破壊した.

写真-1 最終的な破壊性状(左から,供試体 No. 1, No. 2, No. 3, No. 4)

参考文献

1)大塚久哲,宇山友理,秦逸平: RC 柱部材のねじり剛性低下率の定式化と動的解析への適用の研究,構造工学論文 集,Vol.55A,2009,3.2)(社)土木学会:2002年制定コンクリート標準示方書[構造性能照査編], pp.21-24.