プレストレストコンクリート橋脚の大規模地震時挙動に関する解析的検討

株式会社ドーコン 構造部 正会員 〇千葉 知子 株式会社ドーコン 構造部 正会員 一小林 竜太 株

株式会社ドーコン構造部正会員工藤浩史株式会社ドーコン構造部正会員井上雅弘

1. はじめに

本論文では、実在する既設プレストレストコンクリート 橋脚の大規模地震時挙動を把握することを目的として、フ ァイバー要素モデルを用いた非線形動的応答解析によって レベル2地震動下における動的挙動を検証した。

2. 解析対象の概要

本解析で対象とした橋脚は,昭和50年代に建設された円 形の中空断面を有する柱高22.5mの単柱式PC橋脚である。 本橋脚は柱軸方向に8分割された直径2,980mmの円環状の RC製プレキャストセグメントを順次積み重ねた後に,セグ メント内部に配置した計36本のPC鋼棒を緊張することで プレストレスを導入して一体化を図った構造である。

3. 数値解析の概要

3.1 解析モデルの概要

図-1には解析モデルを示している。柱部材には材料非 線形が考慮可能なファイバー要素を、フーチング部材には 弾性梁要素を、柱天端から慣性力作用位置までは剛体要素 を用いた。境界条件はフーチング下端を完全固定とし、上 梁および上部構造の質量はそれぞれの部材重心位置節点に 集中質量として与えた。材料構成則は、コンクリート要素 に対してはコンクリート標準示方書【設計編】¹⁾に基づいた 耐震性能照査用の応力ーひずみ関係を適用した。なお、示 方書では簡略化して引張領域を無視しているが、本解析で は考慮するものとした。また、PC鋼棒および鉄筋要素に対 しては、それぞれTri-linear型、Bi-linear型の応力ーひずみ関 係を適用して、その履歴特性にバウシンガー効果を考慮し た²⁾。表-1、2には各材料の力学的特性値を示している。

3.2 地震応答解析法および入力地震動

地震応答解析には直接積分法に基づいた時刻歴応答解析 法を適用した。数値積分にはNewmark β法(β=1/4)を用い, 時間刻みは1/100秒と設定した。なお,粘性減衰は第1次固 有振動数(f₁=1.34Hz)に対してh=2.0%を与えた剛性比例型 減衰によって考慮した。地震応答解析に用いた入力地震波 形は,道路橋示方書V【耐震設計編】³⁾で規定されているレ ベル2地震動におけるI種地盤用の標準加速度波形とした。

図-1 橋脚の形状寸法および解析モデル

表-1 コンクリートの力学的特性値

項目	圧縮強度 f' _c (MPa)	引張強度 <i>f_t</i> (MPa)	弹性係数 <i>E_c</i> (GPa)	ポアソン比
コンクリート ^{*1}	50.0	3.12	33.0	0.2
コンクリート*2	30.0	2.22	28.0	0.2

*1:プレキャストセグメント,*2:フーチング,充填コンクリート

表-2 鋼材の力学的特性値

	項目	降伏強度 ƒ _y (MPa)	弾性係数 Es(GPa)	ポアソン比	
PC 鋼棒	SBPR1080/1230	1,080.0	200.0	0.3	
鉄 筋	SD345	345.0	200.0		

キーワード :プレストレストコンクリート橋脚, 非線形動的応答解析, ファイバーモデル, レベル2地震動

連絡先:〒004-8585 札幌市厚別区厚別中央1条5丁目4番1号,株式会社ドーコン【構造部】,TEL:011-801-1540

-479

項目	タイプ I 地震動入力時			タイプⅡ地震動入力時				
	1 波目	2 波目	3 波目	3 波平均值	1 波目	2 波目	3 波目	3 波平均值
最大応答加速度 (gal)	616.1	534.4	501.9	550.8	836.0	891.1	937.0	888.0
最大応答変位 (mm)	106.1	132.4	118.0	118.8	215.6	204.9	216.2	212.2
残留変位 (mm)	0.2	0.1	0.3	0.2	3.1	0.4	2.2	1.9
PC 鋼棒の降伏状態	降伏に至らない			第1降伏点には達する				

表-3 数值解析結果一覧

4. 解析結果および考察

表-3には橋脚天端における応答値を一覧にして示す。 表中,残留変位は入力地震波形の継続時間終了後に10秒間 の自由振動解析を行って評価した。また,図-2,3には それぞれタイプIおよびタイプII地震動入力時の橋脚天端 における応答波形の一例を示している。表および図より, タイプI地震動入力時では3波平均値で550.8gal,118.8mm, タイプII地震動入力時では888.0gal,212.2mmであった。残 留変位は各地震動でそれぞれ0.2mm,1.9mmであり,いず れの場合も小さいことが分かる。図-4,5には柱基部の 曲げモーメントー曲率関係を示す。なお、図中の点線はPC 鋼棒が第1降伏点に到達する時点の曲率を示している。図 より,いずれの場合もその復元力特性はPC構造特有のプレ ストレス効果による原点指向型を呈していることが分かる。

タイプ I 地震動入力時では,最大応答曲率が PC 鋼棒の降 伏曲率に達していないことから,ひび割れは生じるものの 十分な耐震安全性が確保されているものと判断される。一 方,タイプ II 地震動入力時では降伏曲率に達していること

が分かる。しかしながら、初期緊張力の低下が懸念される 第2降伏点には至っていないことを確認している。これよ り、タイプⅡ地震動に対しても耐震安全性は確保されてい るものと判断される。

5. まとめ

本研究では、既設 PC 橋脚のレベル2 地震動下における動 的挙動を把握することを目的として、ファイバー要素モデ ルを用いた動的応答解析を実施した。検討の結果、タイプ I 地震動に対しては十分な耐震安全性が確保されており、 タイプ II 地震動に対しては第1降伏点に達するものの、第2 降伏点には至らないことを確認した。また、プレストレス の効果によって復元力特性が原点指向型を呈することから 大規模地震動に対しても残留変位が小さいことを確認した。

参考文献

- 1) 2007年制定:コンクリート標準示方書【設計編】
- 2) PC技術協会: PC構造物耐震設計規準(案), 1999.
- 3) 日本道路協会:道路橋示方書V【耐震設計編】, 2002.