粉体系高流動フライアッシュモルタルの空隙構造特性と ガス透気係数に関する一考察

大成建設㈱原子力本部 正会員 〇木ノ村 幸士

1. はじめに

本報告は、フライアッシュの置換率を変化させた 4種類の粉体系高流動モルタル配合供試体を用いて、 ポゾラン反応により長期間継続する硬化体中の空隙 構造変化とガス透気係数の関係を空隙率、空隙径分 布に基づいて整理し、ガス透気係数の支配的要因に ついて空隙構造特性の観点から考察したものである.

2. 供試体配合

試験に用いる供試体は,水結合材比45%,結合材 量に対し石灰石微粉末を外割りで60%混合した粉体 系高流動モルタル(水粉体比28%)をベースに,フ ライアッシュ(FA)のセメント内割り置換率を0%, 10%,20%,30%と変化させた4種類の配合(以後, 呼称FA0,FA10,FA20,FA30)を準備した.いずれの 配合も,セメントには普通ポルトランドセメントを, 細骨材には最大粒径4mmの富配合の川砂を使用した.

3.供試体の作製・養生

供試体はモルタルを円柱モールドに打設して作製 した.その際,振動・突き固めは行わず,粗大な空 気泡の排除を目的にモールド側面に軽い打撃を加え た.供試体は打設後24時間で脱型し,以後所定の材 齢まで標準養生(20℃,水中養生)を行った.

4. 空隙径分布測定

材齢 28,90,120,180 日にて,水銀圧入法により各 配合の空隙率,空隙径分布を測定した.試料は各材 齢まで標準養生した円柱供試体を小割りした内側部 の小片を用い,凍結真空乾燥により試料中の水分を 完全除去した後,測定を行った¹.各配合について材 齢 28 日,180 日での空隙径分布の比較を図1に,各 材齢での空隙径別の空隙割合の変化を図2に示す.

FA 置換率が大きいほど、材齢経過に伴うポゾラン 反応の進展により空隙径分布が小径側に顕著にシフ トし(図1参照)、FA30 では材齢 180 日で全体の空隙 に占める 20nm 以下の空隙割合が 80%以上と非常に緻 密な空隙構造を有することが確認できる(図2参照).

5. 水飽和空隙率測定

直径 70mm,高さ 140mm の円柱供試体を真空吸引後 水中飽和し,以後重量一定となるまで 105℃で炉乾燥 して重量減少量から空隙率を算定した².一般的に水 銀圧入法では数 nm~数十µm の空隙径範囲の測定が 可能であるのに対し,本測定は硬化体中の全空隙を 簡易に評価できる特徴がある.水銀圧入法により測 定した空隙率と水飽和空隙率の関係を図3に示す.

水銀圧入測定による空隙率は,配合に関わらず材 齢経過に伴って減少するのに対し,水飽和空隙率は FA を含む配合ではほとんど変化が見られない.これ は,ポゾラン反応の進展により比較的径の大きな空 隙が,水銀圧入では浸入できない微小な空隙に変化

キーワード 粉体系高流動モルタル,フライアッシュ,水銀圧入法,空隙径分布,ガス透気係数 連絡先 〒163-6009 東京都新宿区西新宿 6-8-1 大成建設㈱ 原子力本部原燃サイクル部 TEL:03-5381-5315 したことを意味していると考えられ,図2において FA置換率大の配合では,材齢経過に伴い20nm以上の 空隙率が顕著に減少する点からも同様に推測できる.

6. ガス透気係数測定

直径 110mm, 高さ 220mm の円柱供試体の中央部から 切り出した厚さ 50mm の供試体を用いて, ガス透気試 験を行った. 試験には酸素ガスを使用し, 圧力勾配 を 0.1MPa 一定としてガス透気係数の測定を行った. 図4は, 材齢 90日, 180日において, 水で飽和した 供試体を規定の手順³で乾燥させながら各飽和度で 測定した FA0, FA30 のガス透気係数の比較である.

同図において材齢間比較を行うと, FAO ではほとん ど相違が見られないのに対し、FA30 では特に飽和度 が高い領域で大きな相違が見られる.この相違は, FA30の場合,乾燥初期に水分逸散が生じる径の大き な毛管空隙が材齢の経過とともにポゾラン反応の進 展によって減少したこと,高飽和度で微小空隙中に 存在する液状水が空隙の連続性を阻害していること に起因していると考えられる.既往の研究によれば, ガス透気係数は、径が 100nm 以上の空隙率と同空隙 と相関のある空隙の連続性が支配的な要因であると いう報告があり⁴,図1および図2は,FA30が透気 に対し高い抵抗性を有する空隙構造であることを裏 付けている. また, FA30 は全空隙率が大きいにも関 わらず,ガス透気係数はFA0よりも一桁小さく(図4 参照),ガス透気は微小空隙の増加により複雑化する 空隙構造の幾何特性にも大きく依存するといえる.

このように多量の FA を含む配合の場合, ポゾラン 反応によって新たに析出する水和生成物が空隙の連 続性つまりガス移行経路を複雑化すること, またこ のような充てん作用は長期間継続することが, これ らの多面的な測定結果から確認することができた.

7. まとめ

多量のフライアッシュを含む配合に対し水中養生 を行うと、時間の経過に伴いポゾラン反応が進展し、 長期的に非常に緻密な空隙構造が形成されることが 定量的に確認された.また、ポゾラン反応による比 較的粗大な空隙中への新たな水和生成物の析出は、 空隙径分布を小径側へシフトさせるとともに、空隙 構造の連続性を著しく複雑化することから、全空隙 率自体はほとんど変化しないにも関わらずガス透気 係数を大幅に低減する効果があることが推察された.

8. 謝辞

本報告はフランス国立中央土木研究所(LCPC)で 実施した研究成果の一部である. 御指導賜りました V. Baroghel-Bouny 博士に, 心より感謝申し上げます.

図3 水飽和空隙率と水銀圧入空隙率の関係

図4 飽和度とガス透気係数の関係(FA0, FA30)

参考文献

- Techniques and methods of LCPC, Test method 58.4 'Porosimetry of hardened concrete by mercury intrusion' (in French), pp. 29-32, LCPC, 2002
- Recommended methods for the measurement of durability indicators, Report of AFPC-AFREM technical journal 'Durability of concrete' (in French), 1997, Toulouse, France (LMDC, 1998)
- 3. Techniques and methods of LCPC, Test method 58.7 'Measurement of gas permeability of hardened concrete by a device with a constant pressure' (in French), pp. 47-52, LCPC, 2002
- 4. Mehta, P.K., Cement and Concrete Research, vol. 11(4), pp. 507-518, 1981