材齢 6 ヶ月におけるフライアッシュコンクリートの耐久性評価 その1 実験概要および塩分浸透性

東北電力㈱研究センター 正会員 成田 健 東北電力㈱土木建築部 和田宙司 (株)太平洋コンサルタント 正会員 岸良 竜

㈱太平洋コンサルタント

正会員 赤塚久修

1.はじめに

フライアッシュ (以下、FA)を用いたコンクリートは、ポゾラ ン反応に伴う組織の緻密化により耐久性が向上するが、通常の促 進試験は前養生期間が短くポゾラン反応が十分に進行しない段階 で試験を実施しており、FA コンクリートの耐久性が適切に評価さ れない。本報では、耐久性を重視する分野でのフライアッシュ利 用を図るため、通常の促進試験と前養生期間を6ヶ月と比較的長 期間とした促進試験を行い、耐久性を評価した結果を報告する。

2. 実験概要

2.1 使用材料および配合

使用材料を表1に示す。混和材として FA を3 種類と、比較用 として高炉スラグ微粉末を使用した。表 2 に使用した FA の品質 を示す。FA は JIS 種品 (FN1) および比較的比表面積の小さい 原粉2種類(FN2、FN3)を使用した。

配合を表3に示す。水結合材比は55% で一定とし、混和材をセメント代替(内 割)または細骨材代替(外割)で使用し た。FA を使用する場合は、置換率を 15、 30%とし、高炉スラグ微粉末を使用する場 合は、置換率を 40% とした。

2.2 試験項目および養生方法

試験項目および試験方法を表 4 に示す。耐久性 の評価として、促進中性化、塩化物イオンの浸透 性および耐硫酸塩性試験を実施した。

各試験における前養生方法を表 5 に示す。各試 験方法に示される標準的な前養生方法に加え、材 齢 6 ヶ月と比較的長期間、前養生を行った水準を

表 1 使用材料

使用材料	記号	備考						
水	W	水道水						
セメント	N	普通ポルトランドセメント						
	FN1	JIS A 6201 種品						
フライアッシュ	FN2	原粉(比表面積3000cm²/g程度品)						
	FN3	原粉(比表面積2500cm²/g程度品)						
高炉スラグ微粉末	В	JIS A 6206 高炉スラグ微粉末4000						
細骨材	S	山砂,静岡県菊川市河東産						
粗骨材	G	硬質砂岩砕石2005、茨城県桜川市富谷産						
AE減水剤	ad1	AE減水剤標準型 種、 リグニンスルホン酸化合物およびポリオール複合体						
AE剤	ad2	AE剤 種、 アルキルアリルスルホン酸化合物系陰イオン界面活性剤						

表 2 FA の品質

K = IN WHIS								
項目			フライアッシュ					
	坦		FN1	FN2	FN3			
25	密度	(g/cm ³)	2.25	2.11	2.12			
プレーン比表面積		(cm^2/g)	3840	2960	2660			
		(%)	102	-	-			
活性度	材齢28日	(%)	85	-	-			
指数	材齢91日	(%)	97	-	-			
		(%)	1.3	1.3	1.1			

表 3 配合

	混和材	置換率		スランプ 空気量 (cm) (%)	水 結合材比	s/a	₩ (Þ. = (1 (-3)						混和剤添加量			
配合番号	内割	外割	スランプ (cm)		S/a	単位量(kg/m³)							(P×mass%)			
	(P×mass%)	(\$×vol.%)			(mass%)	(%)	W	С	FN1	FN2	FN3	В	S	G	ad1	ad2
N	-	-		4.5	55	46.0	165	300	0	0	0	0	834	994	0.25	0.0020
FN1-内15%	15	-			55	46.1	161	249	44	0	0	0	836	994	0.25	0.0050
FN1-内30%	30	-	12		55	46.1	157	199	86	0	0	0	839	994	0.25	0.0095
FN2-内15%	15	-	12		55	46.4	158	244	0	43	0	0	846	994	0.25	0.0040
FN3-外15%	-	15			55	40.7	176	320	0	0	96	0	671	994	0.25	0.0130
BB	40	-			55	46.1	162	177	0	0	0	118	839	994	0.25	0.0030

表 4 試験項目および試験方法

試験項目	試験方法
塩1化物1 オブの	所定の前養生後、JSCE-G 572 「浸せきによるコンクリート中の塩化物イオンの見掛けの拡散係数試験方法(案)」に準拠。ただし、供試体は10×10×40cmとし、全塩化物イオン量の測定はJSCE-G 574による。
促進中性化試験	所定の前養生後、JIS A 1153「コンクリートの促進中性化試験方法」に準拠。
耐硫酸塩性	所定の前養生後、JIS原案「コンクリートの溶液浸漬による耐薬品性試験」に準拠。

実施した。材齢6ヶ月から試験を行う水準においては、初期の湿潤養生期間を1、3および7日とし、その後 材齢 6 ヶ月まで 20 、60% RH の環境下で養生を行った。

キーワード:フライアッシュ、材齢、塩分浸透性、見掛けの拡散係数

〒981-0952 仙台市青葉区中山 7-2-1 TEL.022-278-0356 FAX.022-278-2176

3.実験結果および考察(塩分浸透性) 塩化物イオンの浸透性試験結果を図 1~4 に示す。フィックの第2法則より 求めた塩化物イオンの見掛けの拡散係 数を図5に、各配合における標準規格 での試験時に対する見掛けの拡散係数 の比(以下、見掛けの拡散係数比)を 図6に示す。いずれの配合においても、 材齢 6ヶ月から試験を行うことにより、 材齢 4 週から試験を行った場合と比較 して見掛けの拡散係数が小さくなった。 混和材無混入の場合には、初期の湿潤 養生期間が長くなるにつれて、見掛け の拡散係数が小さくなる傾向が見られ る。FA および高炉スラグ微粉末を使用 した場合は、初期の湿潤養生期間によ る差は明確でない。FA を内割で使用し た場合、標準規格での試験時は、混和 材無混入のコンクリートと同程度か、 FA 品質によっては 1.2 倍程度大きかっ たが、材齢 6ヶ月では、置換率、FA品 質によらず混和材無混入のコンクリー トの 70~80% となった。FA を外割で使 用した場合、いずれの養生条件によっ ても混和材無混入のコンクリートの 50~60%程度であった。高炉スラグ微 粉末を使用した場合よりは若干見掛け の拡散係数が大きいが、材齢 6ヶ月で はその差が小さくなる傾向にあった。

4.まとめ

材齢の異なる FA コンクリートの塩分浸透性を検討し、以下の知見を得た。(1)混和材の有無、種類に関わらず、材齢 6ヶ月から試験を実施することにより、通常の促進試験時と比較して、塩化物イオンの見掛けの拡散係数が小さくなる傾向が見られた。

(2)材齢6ヶ月においては、FAを使用した場合、内割、外割ともに混和材無混入のコンクリートより塩化物イオンの見掛けの拡散係数が小さくなった。

表 5 前養生方法

前	養生条件	概要
	塩化物(オンの 浸透性試験	材齢1日で脱型。材齢4週まで20 水中養生
標準規格	促進中性化試験	材齢1日で脱型。材齢4週まで20 水中養生。その後材齢8週まで20 、60%RH養生。
	耐硫酸塩性試験	材齢1日で脱型。材齢1週まで20 水中養生。その後材齢21日まで20 、60%RHで封かん養生。その後封かんをとき材齢26日まで20 、60RRN養生の後、材齢4週まで20 水中養生。
長期1日	塩化物(オンの 浸透性試験	材齢1日で脱型。1面を残しその他の面をエボキン樹脂で被覆し、材齢6ヶ月まで20 、60%RH 褻生。
	塩化物付かの 浸透性試験	材齢1日で脱型。材齢3日まで20 水中養生。その後、1面を残しその他の面をIA* 杉樹脂で 被覆し、材齢6ヶ月まで20 、60%RH養生。
長期3日	促進中性化試験	材齢1日で脱型。材齢3日まで20 水中養生。その後、2面を残しその他の面をIがお樹脂で被覆し、材齢6ヶ月まで20 、60%RH養生。
	耐硫酸塩性試験	材齢1日で脱型。材齢3日まで20 水中養生。その後、材齢6ヶ月まで20 、60%RH養生。
	塩化物付かの 浸透性試験	材齢1日で脱型。材齢7日まで20 水中養生。その後、1面を残しその他の面をエボキン樹脂で被覆し、材齢6ヶ月まで20 、60%RH養生。
長期7日		材齢1日で脱型。材齢7日まで20 水中養生。その後、2面を残しその他の面をIがお樹脂で被覆し、材齢6ヶ月まで20 、60%RH養生。
	耐硫酸塩性試験	材齢1日で脱型。材齢7日まで20 水中養生。その後、材齢6ヶ月まで20 、60%RH養生。

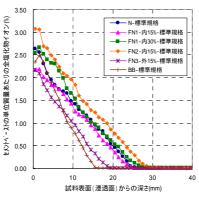


図1 塩化物イオンの浸透性 (前養生条件:標準規格)

図2 塩化物イオンの浸透性 (前養生条件長期1日)

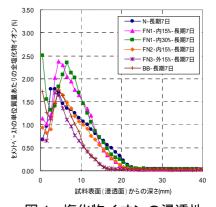


図3 塩化物イオンの浸透性 (前養生条件:長期3日)

試料表面(浸透面)からの深さ(mm)

図5 見掛けの拡散係数

図 4 塩化物イオンの浸透性

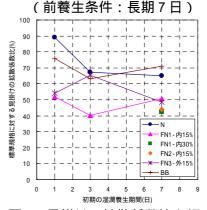


図 6 見掛けの拡散係数比と初 期の湿潤養生期間の関係