衝撃弾性波法を用いたコンクリート構造物の欠陥探査システムの検証

東北学院大学工学研究科土木工学専攻 学生会員 〇相良 雄三東北学院大学工学部環境建設工学科准教授 正会員 李 相勲東北学院大学工学部環境建設工学科教授 正会員 石川 雅美仙建工業株式会社 渡辺 正典

1. はじめに

近年,建設後10~20年という早い時期に劣化現象を生 ずるコンクリート構造物が多数存在している.そのため 構造物を維持・管理するための耐久性診断の重要性が高 まる中,構造物の健全性を適切に評価する手法として構 造物に損傷を与えずに簡便に試験できる非破壊検査技術 の確立が強く望まれている.

本研究では,非破壊検査技術の一つである衝撃弾性波 法を用いた探査システムを構築し,擬似的に内部欠陥を 作成した試験体に対する測定を行うことで,欠陥の位置 や深さおよび大きさの測定可能性を実験的に検討した.

2. 測定システム概要

本測定システムは、受振子(加速度計)、データロガー (FFT 解析機能内臓)、インパクター(鋼球)、波形処理 装置としてコンピュータを使用している.(図1)

3. 測定原理 1) 2)

衝撃弾性波法は、コンクリート表面に受振子を接触さ せ、試験対象物にインパクターで衝撃を与えることで弾 性波を発生させ、対象物中を伝播した弾性波を受振子で 受振し、その弾性波を FFT 解析により得られる共振周波 数を用いて内部の欠陥の位置や寸法を測定する方法であ る. そして、得られた共振周波数と既知の弾性波伝播速 度を式(1)に代入して測定長さを求めることができる.

$$T = C_p / 2f_p \tag{1}$$

ここで、 $T: 測定厚さ, C_p: 伝播速度, f_p: 共振周波数$

4. 実験概要

4.1 試験体の概要

試験体として,100x150x300mmのコンクリート試験体 に対し,70x70x10mmのアクリル箱でそれぞれの深さご とに内部欠陥を作成した.試験体の概要を図2に,内部 欠陥深さを表1に示す.

表1 内部欠陥深さd

	No.1	No.2	No.3	No.4	No.5	No.6	No.7
d (mm)	125mm	105mm	85mm	75mm	55mm	35mm	15mm

4.2 測定方法

コンクリート表面に手で加速度計を接触させ、鋼球で 加速度計にできるだけ近いところに、高さ10cmからの自 由落下で衝撃を与える.そのとき発生した弾性波を FFT 解析することによって共振周波数を測定した.まず、予 備実験として同材料で製作した直方体の試験体に対する 共振周波数測定により伝播速度を 3882m/s とする.本実 験では、測定位置として健全部、欠陥中央部、欠陥端部 の3箇所を測定し、それぞれの測定位置で周波数スペク トルに与える影響を比較した.図3に測定位置の概要を 示す.使用した鋼球は直径6mm、11mmとする.

図3 試験体断面図

5. 測定結果および考察

5.1 内部欠陥深さ測定

図4に内部欠陥中央部での測定による周波数スペクト ルを示す. 図中の点線は内部欠陥深さでの予測共振周波 数を表している. 内部欠陥深さ 55mm の周波数スペクト ルでは,予測値付近に共振周波数はあるものの,振幅の ピーク値が小さく,低周波数帯に存在する共振周波数と 比較した場合、判断しづらい結果となった.これは、 d=55mm で必要とする周波数成分 35.3kHz に対し,加速 度計の測定範囲が 25kHz であるため、測定範囲外である ことがその原因として考えられる.また, d=85mm では, 予測値付近に複数のスペクトルは存在するが、明確な共 振周波数は得られなかった.これは、作成した試験体の 欠陥が斜めになっているなど、内部状況が良くないため であると推測される. d=75mm, 105mm では, 予測値付 近に共振周波数の存在が確認できる.これにより、本測 定システムでは、内部欠陥深さ 75mm の欠陥まで測定で きることがわかる.以下にNo.4試験体について考察する.

No.4試験体(d=75mm)に対する測定位置3点での測定に よる周波数スペクトルを図5に示す. 図中の点線は,左 が健全部(測定寸法150mm),右が内部欠陥(測定寸法 75mm)の予測共振周波数を示す. 健全部でのスペクトル を見ると,測定寸法150mmの予測値付近に卓越した共振 周波数(ピーク周波数)が存在するが,測定寸法75mm の予測値付近にはピーク周波数が見られない. それに対 し,欠陥中央部でのスペクトルからは,測定寸法150mm の予測値にピーク周波数は見られず,測定寸法75mmの 予測値にはピーク周波数が見られた. これは,確実に内 部欠陥を検出していることを表す.また,図6に測定位 置3点で得られた共振周波数のピーク値のグラフを示す. この図は、本システムが健全部と欠陥部のスペクトル値 の変化から欠陥部の幅を検知することができることを表 している.

6. まとめ

1. 本測定システムで内部欠陥深さ 75mm の比較的浅い寸 法まで測定できることが確認された.

 2. 欠陥中央と健全部の比較から、欠陥までの深さに加え、 欠陥の幅を一定の精度で特定できることが確認された.
今後、内部欠陥検出の精度を高めるとともに、実構造物の適用について検討する予定である.

参考文献

1) 土木学会:コンクリート技術シリーズ No.61 弾性波
によるコンクリートの非破壊検査に関する委員会報告お
よびシンポジウム論文集,2004.8

2) Sansalone, M. and Streett, W.B. : Impact-Echo , Nondestructive Evaluation oh Concrete and Masonry, Bullbrier Press, Ithaca, NY and Jersey Shore, PA, 1997