-176

PC グラウト充填評価への電磁パルス法の適用

大阪大学大学院工学研究科	学生会員	○角田 蛍	大阪大学大学院工学研究科	正会員	鎌田	敏郎
大阪大学大学院工学研究科	正会員	内田 慎哉	大阪大学大学院工学研究科	学生会員	宗像	晃太郎
		ジェイアールす	東海コンサルタンツ株式会社	正会員	稲熊	唯史
大阪大学大学院工学研究科	学生会員	山本 健太	大阪大学大学院工学研究科	正会員	大西	弘志

1. はじめに

本研究では、供試体実験において、シース直上のコン クリート表面および PC 鋼棒端部に振動センサを設置し た状態で、コンクリート表面側から非接触でパルス状の 電磁力を入力した場合に受振される弾性波の挙動に着目 し、シース内部のグラウト充填状況を評価するための電 磁パルス法について検討した.

2. PC グラウト充填評価の原理の確認

2.1 実験概要

電磁パルス法によるグラウト充填評価の原理を確認す るため、グラウトが充填されていないプラスチック製シ ースおよび鋼製シースを対象に測定を行った.供試体は 縦 2000mm×横 2000mm×奥行 235mm の RC 供試体であ る(写真1参照).いずれのシースも直径は 32mm であり、 内部には φ 23mm の PC 鋼棒がそれぞれ挿入されている. シース埋設深さは 50mm とした.

電磁パルス法の計測状況を写真 2 に示す. 励磁コイル にパルス状の電流を流し、コイル周辺に瞬間的な磁場を 発生させることにより、供試体内部の鋼棒および鋼製シ ースを振動させた. コイルは、シース直上の軸方向の中 央位置のコンクリート表面から 20mm 離した位置に設置 した(写真 2 参照). PC 鋼棒の片端部には AE センサを貼 り、弾性波の受振を行った.

2.2 実験結果および考察

図1にプラスチック製シースおよび鋼製シース内部の 鋼棒で受振した弾性波の受振波形をそれぞれ示す.プラ スチック製シース内部の鋼棒での受振波形は,振幅の大 きな波形となった.プラスチック製シースは磁性体では ないため,受振した弾性波は鋼棒単体の振動によるもの である.これに対して鋼製シースの場合では,信号を検 知したものの,プラスチック製シースの場合と比較して, 極めて小さいものであった.磁性体(シース)内部空間 内に、それとは異なる磁性体(鋼棒)がある場合、図2 に示すとおり、シースによる磁気遮へい効果の影響を受 けて、シース内部の磁束密度は小さくなり、それにとも なって鋼棒の振動も小さくなったと考えられる.

以上の結果に基づき,電磁パルス法による評価原理の 概念図を図3に示す.グラウトが充填されていない場合

(図3a))では、パルス状の電磁力をコンクリート表面 側から非接触で入力すると、磁性体である鋼製シースが 主に振動する.シース内部の鋼棒は、シースによる磁気 遮へい効果により、ほとんど振動しない.一方、グラウ トが充填されている場合(図3b))は、電磁力によりシ ースが振動するものの、グラウトによる拘束の影響を受 け、未充填での振動よりも小さくなる.鋼棒は前述のと おり磁気遮へいによりほとんど振動しないが、シースの 振動がグラウトを介して鋼棒へ伝播すると考えられる.

[単位:mm]

写真1 供試体

写真2 電磁パルス法による計測状況

キーワード グラウト,非破壊検査,電磁パルス法,弾性波,磁気遮へい 連絡先 〒565-0871 吹田市山田丘 2-1 Tel 06-6879-7618

図2 磁気遮へいのイメージ

そのため、未充填での振動よりも大きな振動になること が想定できる.以上のことから、シースおよび鋼棒での 振動をそれぞれ把握することにより、グラウト充填状況 を評価できると考えられる.

3. PC グラウト充填状況が弾性波伝播挙動に与える影響

3.1 実験概要

供試体寸法および鋼棒直径は、2.1と同じである(写 真1参照).シースは直径32mmの鋼製シースを深さ50mm の位置に設置した.ここでは、グラウト充填状況が弾性 波挙動に与える影響について把握するため、グラウトが 未充填の場合およびグラウトが完全に充填されている場 合の2ケースを対象にした.

電磁パルス法の計測は、2.1とほぼ同じである(写 真2参照).ただし、ここでは、PC 鋼棒に加えてコンク リート表面にも AE センサを貼り付けた.コンクリート表 面のセンサは、シース軸方向の中央かつシース埋設位置 直上に設置している(写真2参照).

3.2 実験結果および考察

図4に、コンクリート表面および鋼棒で受振した弾性 波の最大振幅値をグラウト充填の有無ごとにそれぞれ示 す.コンクリート表面におけるグラウト未充填での最大 振幅値は、充填のそれと比較して大きい.これは、グラ ウトが無いことによりシースへの拘束力が小さくなった ためである.一方、鋼棒におけるグラウト未充填での最 大振幅値は、グラウト充填と比較して微小であった.グ ラウト未充填では、シースによる磁気遮へいにより鋼棒

は振動しにくくなる.しかしながら,グラウト充填の場 合は,グラウトが弾性波の媒質となり,シースの振動が 鋼棒へと伝播したと考察できる.以上のことから,シー ス直上のコンクリート表面および PC 鋼棒端部に設置し た振動センサで受振した弾性波の最大振幅値に着目する ことにより,シース内部のグラウト充填状況が評価可能 である.

4. まとめ

以下に本研究で得られた結論を示す.

- 鋼棒端部で受振した弾性波に着目すると、グラウト 未充填では、磁気遮へいにより鋼棒はほとんど振動 していない.一方、充填では、グラウトによりシー スの振動が鋼棒へと伝播するため、弾性波が受振さ れた.両者の違いから、グラウト未充填を検出でき る可能性があることを明らかにした.
- 2) 鋼棒とコンクリート表面で受振した両者の弾性波に 着目すると、コンクリート表面では、グラウトによ るシースの拘束力がグラウトの有無により変化する ため、受振波の最大振幅値が変動する.一方、鋼棒 では、グラウト未充填の場合のみ波を受振すること は原理上困難であった.したがって、この方法でも 未充填が検出でき、しかも検出結果の確からしさは 上記 1) よりも高くなる.