急曲線トンネル内の外軌波状摩耗の現地調査結果

1		は	じ	め	こ
•	•		-		

一般的な波状摩耗は,急曲線の内軌レールの頭頂面 に発生し,その波長は十数cm程度であることが広く知 られている.これに対して,曲線の外軌レールのゲー ジコーナーに波長数10cm程度の波状摩耗(外軌波状摩 耗)が発生することが,稀な事例として報告されてい る¹⁾.この度JR東日本管内において軌道調査を行ったと ころ,この種の波状摩耗の発生が確認された.その発 生状況を詳細に調査したので,以下に,その結果を報 告する.

2.車上輪重・横圧測定による高周波輪重・横圧変動 走行試験において,新連続法による車上輪重・横圧 の測定を行った.その結果,図1に示すような外軌の 輪重・横圧が高周波変動する特異な波形が確認された. 波形を詳細に分析した結果,このような波形は半径 300mの急曲線とトンネルが重なる区間のみで発生し ていることがわかった.また,その周波数は,55Hz程 度であり,走行速度との関係から波長に換算すると, 当該区間の軌道に波長約30cmの不整が存在すると考 えられた.表1に,その発生区間の一覧を示す.これ より,高周波の輪重・横圧変動は,半径300mの急曲 線,トンネル,急勾配区間で発生していることがわか る.表1からもわかるように,当該線区のトンネルは, 半径300mか直線のみとなっており,曲線半径の違い による発生の有無はわからなかった.また,同図より,

図1 車上輪重・横圧の波形例

東日本旅客鉄道株式会社	正会員	輪田	朝亮
鉄道総合技術研究所	正会員	田中	博文

トンネルの坑口から横圧変動が大きくなり,トンネル 内であっても緩和曲線に至ると横圧変動は次第に小さ くなることがわかる.

3. 現地調査結果

車上輪重・横圧で外軌に特異な波形が得られた区間 の現地調査を行った.その結果,図2に示すように, トンネル内の外軌ゲージコーナー部に,比較的波長の 長い摩耗による照り面の連続的な変化が存在すること を目視で確認した.次に,それらについてデジタル式 の1m凹凸測定器を用いて,頭頂面の凹凸調査を実施し た.図3に,外軌レールの凹凸測定結果を示す.同図 より,波長約30cm程度,振幅0.2mm程度の波状摩耗 であることがわかる.一方で,同箇所の内軌レールの 頭頂面には,波長14cm程度の波状摩耗が発生していた. なお,内軌波状摩耗は,トンネル内,明かり区間を問 わず,曲線内に連続的に発生していた.

区間	発生延長 [m]	線形	カント [mm]	勾配 [‰]	構造物
A	54	R300	90	22	トンネル
В	40	R300	90	22	トンネル
С	59	R300	90	22	トンネル
D	184	R300	90	22	トンネル
Е	93	R300	90	22	トンネル
F	25	R300	90	22	トンネル
G	170	R300	95	-19	トンネル
Н	78	R300	90	-18	トンネル

R300

116

85

-25 トンネル

表1 高周波輪重・横圧変動の発生区間一覧

図2 外軌波状摩耗の発生状況

キーワード:波状摩耗,トンネル,外軌,ゲージコーナー,車上輪重・横圧測定,レール凹凸測定 連絡先:〒331-8513 さいたま市北区日進町2丁目479番地 テクンカルセンター TEL048-651-2389

さらに,外軌波状摩耗が連続する区間において,レ ール長手方向の振幅や波長の変化の有無について調査 するために,連続的に凹凸測定を実施した.図4に, その測定結果を示す.A,B,Cレールは連続する3 本の外軌レールであり,DレールはBレールの対側の 内軌レールである.同図より,外軌波状摩耗の振幅に は波長数 m 程度で周期的な大小が存在することがわか る.また,トンネルの坑口から急激に振幅が大きくな っていることがわかる.これは,車上輪重・横圧測定 の結果と一致しており,この外軌波状摩耗が高周波輪 重・横圧変動の原因であることが確認された.一方で, 内軌波状摩耗の振幅には明確な周期的な変動は見られ なかった.

図4 波状摩耗レールの連続凹凸測定結果

次に,詳細に外軌レールの摩耗状況を把握するため, 3 面式の 1m レール凹凸測定器を改良し,図 5 に示す

~ のレール各点における凹凸測定を実施した.表2 に,測定結果を示す.これより,波状摩耗は外軌レー ルのレール頭頂面から頭側面にまで進行していること がわかり,その波高は13R 部で最も大きくなっていっ た.この様に,頭側面にまで進行し波状摩耗は,レー ル削正によって除去することは困難であると考えられ る.

図5 レール各部の凹凸測定位置

表2 レール各部の凹凸測定結果

	振幅 [mm]				
トンネル	頭頂面 -10mm	頭頂面 中央	頭頂面 +10mm	13R 部	頭側面
				2	
A	0.00	0.10	0.15	0.30	0.10
В	0.00	0.20	0.40	0.50	0.35
В	0.00	0.16	0.35	0.50	0.35
С	0.00	0.10	0.45	0.60	0.40
С	0.00	0.20	0.40	0.60	0.50
D	0.00	0.15	0.40	0.80	0.50
D	0.00	0.13	0.30	0.38	0.30

4.まとめ

走行試験において車上輪重・横圧測定を行った際に, 急曲線とトンネルが重なる区間のみにおいて高周波の 輪重・横圧変動が生じていたことから,当該区間の現 地調査を行った.その結果,外軌レールのゲージコー ナー部に波状摩耗が発生しており,その波長は30cm 程 度であり,振幅は周期的に変動していることを確認し た.また,外軌波状摩耗は,ゲージコーナー部のみな らず頭側面にまで摩耗が進行しており,レール削正に よる除去が困難と考えられること,ならびに発生した 場合は高周波の輪重・横圧変動が生じ,軌道部材の劣 化に影響すると考えられることから,その発生メカニ ズムの解明と対策法の検討が重要であると考えている.

今後は,波状摩耗の振幅の周期的な変化が発生メカ ニズムに影響していると仮定し,複数のトンネルにお いて連続凹凸測定を実施すると共に,振動学的なアプ ローチで現象の解明に取り組む予定である.

参考文献

 西本正人: JR 四国におけるレール波状摩耗の発生 と軸箱振動加速度の測定,新線路, Vol.49, No.5, pp.22-24, 1995.