締結過程を考慮した線ばね形レール締結装置の非線形弾塑性解析

1. はじめに

近年、保守作業の効率化などを目的として、線ばね 形レール締結装置が地方線区をはじめ広く用いられ ている。この線ばね形レール締結装置のクリップ(以 下、「クリップ」と称す。)は、締結時に大きな応力を 生じることが過去の知見から明らかになっている。し かし、締結過程で生じるひずみと応力分布は、必ずし も明確ではない。

そこで、本研究では、それらの応力とひずみを把握 するために、線ばね形レール締結装置を有限要素で詳 細にモデル化し、非線形弾塑性解析を実施した。

2. 解析条件

クリップには締結時に大きなひずみが生じるため、 締結過程を有限要素モデルで解析した。しかし、一般 に組立を模擬する有限要素解析は強い非線形性を有 するため、動的陽解法を用い、荷重の作用時間を長め にすることで、動的影響を小さくして解析した。

解析モデルを図1に示す。レール、レール締結装置 および締結工具を三次元ソリッド要素でモデル化し、 締結工具による組立が模擬できるように拘束条件を 設定した。

解析に用いた物性値を表1に示す。クリップは弾塑 性体とした。応力-ひずみ曲線は、クリップの一部を 切り出して引張試験片を作成し、引張試験を実施して 設定した。部材間には接触表面を定義し、摩擦係数を 設定した(表 2)。

締結は 0.4 秒間で行い、応力が十分安定するまで 0.1 秒間経過させた後の結果を評価に用いた。

3. 組立試験

解析の妥当性を検証する目的で組立試験を実施し、 クリップによるレール押え力とひずみを測定した。組 立試験では、解析と同じレール締結装置を用い、図2 に示す位置で締結後のひずみを測定した。

図1 解析モデル図

表1 解析諸元

部材	ヤング係数	ポアソン比
50kgN レール	206GPa	0.3
インシュレータ	3GPa	0.35
ショルダー	161GPa	0.3
軌道パッド	45.6MPa ※1	0. 01
クリップ	×2	0.3
締結工具	剛体	_

※1 ばね定数 110MN/m を換算した。

※2 引張試験から得られた応力-ひずみ曲線を用 いた弾塑性体とした。

表 2 摩擦係数

部材1	部材 2	摩擦係数
軌道パッド	レール	0. 48
クリップ	インシュレータ	0. 2
クリップ	ショルダー	0.1
インシュレータ	レール	0. 2

⁽a) 測点1(b) 測点2図2 組立試験時のひずみ評価点

キーワード 線ばね、レール締結装置

連絡先 〒185-8540 東京都国分寺市光町 2-8-38 TEL042-573-7275 FAX042-573-7432

図 5 解析過程における軌間内側のクリップの塑性 ひずみと最大主応力の最大値の推移

表3 最大主ひずみの比較

	測点 1 (×10 ⁻²)	測点 2 (×10 ⁻²)	押え力 (kN)
組立試験(軌間外)	1.59	0.82	12. 2
組立試験(軌間内)	1.19	0.44	12. 2
解析(軌間外)	1.54	0.66	9. 2
解析(軌間内)	1.51	0. 70	9. 2

4. 解析結果

解析による締結過程と塑性ひずみ分布を図3に、締 結後の最大主応力分布を図4に示す。解析と組立試験 で得られたレール押え力および最大主ひずみを表3 に示す。

5.考察

解析結果から、クリップは適切な箇所に締結されて おり、最大主ひずみの値は組立試験の結果と概ね一致 した。しかし、レール押え力は、解析より組立試験の 方が1.3倍ほど高かった。これらのことから締結後の クリップの状態は、限られた範囲において概ね再現さ れていることが確認された。押え力に影響を与える要 因として、各部品の公差とモデル化の妥当性が挙げら れる。わずかな差でも押え力に影響を与える可能性が あるため、モデル化の妥当性について検討が必要であ ると考えられる。

クリップの最大主応力は、クリップがショルダーを 乗り越えた際に最大となり、締結後の値より1.7倍ほ ど大きい(図5)。塑性ひずみも同時刻で増加が収まっ ており、塑性変形はショルダーを乗り越える際に生じ るものが支配的であることが分かった。また、塑性ひ ずみと最大主応力の最大値は、それぞれ異なる位置で 発生していることが分かった(図3、図4)。

6. まとめ

線ばね形レール締結装置を締結する際の発生応力 とひずみ分布を、非線形弾塑性有限要素解析を行うこ とにより把握した。締結後の状態を試験と比較した結 果、限られた範囲では概ね一致していることが確認さ れた。

今後は、得られたひずみと応力分布を元に、ひずみ 測定位置を検討して実験を行い、モデルの妥当性の検 証を進める予定である。また、列車荷重がクリップに 与える影響を把握するために、1 締結のみのモデル化 では解析条件の設定が困難であるため、複数の締結装 置のモデルを用いて解析を行う予定である。