くい打機の自走挙動に関する実験的解析(その1)

ー 遠心模型実験のモデル化と実験条件 ―

独立行政法人労働安全衛生総合研究所 正会員 〇玉手 聡, 堀 智仁 東京都市大学大学院 学生会員 前田周吾, 正会員 末政直晃

1. はじめに

基礎工事用大型車両系建設機械(以下,くい打機と 呼ぶ)の転倒災害が度々発生している(写真1参照). その転倒原因の多くは設置地盤の支持力不足にあるが, 背景にはくい打機がトップヘビーな構造を有しながら 現場内を自走することと,設置される施工現場が軟弱

地盤であるなど潜在 的な危険要因がある と思われる.

本研究では,地盤 側と機体側に存在す るくい打ち機固有の 不安定要因に着目し 遠心模型実験による 調査を行った.本報 告では本実験の概要 について述べる.

与具 転倒災害の様子

2. くい打機のモデル化と遠心模型実験

1)実験のモデル化

自走に伴って揺動するくい打機の挙動を実験的に再 現するために,回転運動に関する相似則を検討した. 以下では添え字 *p* が実機を示し,*m* は模型を示す.

相似比率が n 倍の時,慣性質量を I, 傾斜角を θ , ダ ンピング係数を c,時間を T,接地面積を A,腕の長さ l,地盤の弾性係数 k, ひずみを ε ,重力加速度を g とす る.慣性モーメントの比 r_i は式(1)により表され,土の 粘性によるダンピング力のモーメントの比 r_c は式(2), さらに地盤反力によるモーメントの比 r_e は式(3),そし て転倒モーメント r_m の比は式(4)で表される^{1),2)}.

$$r_{i} = \frac{I_{m} \overset{\bullet}{\sigma}}{I_{p} \overset{\bullet}{\phi}_{p}} = \frac{1}{n} \times \left(\frac{T_{p}}{T_{m}}\right)^{2} \quad (1) \quad , \quad r_{c} = \frac{c_{m} l_{m} A_{m} \overset{\bullet}{\phi}_{m}}{c_{p} l_{p} A_{p} \overset{\bullet}{\phi}_{p}} = \frac{1}{n^{3}} \times \frac{c_{m}}{c_{p}} \times \frac{T_{p}}{T_{m}} \quad (2)$$

$$r_e = \frac{k_m \varepsilon_m l_m A_m \theta_m}{k_p \varepsilon_p l_p A_p \theta_p} = \frac{1}{n^3} \quad (3), \qquad r_m = \frac{m_m l_m g_m}{m_p l_p g_p} = \frac{1}{n^3} \times \frac{g_m}{g_p} \quad (4)$$

ここで,式(1),(2),(3),(4)に示すモーメントの比が 全て等しくなる条件は式(5)の関係であり,その成立条 件は式(6),(7),(8)の通りとなる.

$$r_i = r_c = r_e = r_m = \frac{1}{n^3}$$
 (5), $\frac{T_m}{T_p} = \frac{1}{n}$ (6)

$$\frac{c_m}{c_p} = n$$
 (7) , $\frac{g_m}{g_p} = n$ (8) , $\frac{v_m}{v_p} = 1$ (9)

模型に n 倍の重力と地盤に n 倍のダンピング係数を 与えると,現象は 1/n の時間で再現される.従って,速 度(v)は模型と実物で等しく与える必要がある.なお, 本実験では土の粘性を n 倍とする人工的な調整は施し ていない.しかし,くい打機から模型地盤に働く接地 圧力を降伏支持力以下のレベルで与えるようにするこ とで,ダンピング力が運動に与える影響は減少させた. 2)実験装置

約 1/25 スケールのくい打機の小型模型 ³⁾を写真 2 に 示し,実機との主要諸元の比較を表 1 に示す.模型は 高さ 80cm,長さ 25cm,幅 15cmの外形を有し,機体重 量は 27.4N である.リーダーに付加質量を搭載するこ とにより,重心位置を変えた任意な安定度を再現する ことが出来る.この模型の走行は無線により遠隔操作 する.遠心場で 30cm/sec 以上の速度を発生可能な動力 が備わっており,実機と同レベルの速度を再現可能で ある.また,筐体には 30g 場における自重に耐えうる 強度が与えられている.

機体に搭載するモーター,減速機,バッテリー等は 重心が実機と等しくなるように配置している.

表1 実機と模型における主要諸元の比較

	実機			1/25 模型		
	重量	水平	鉛直	重量	水平	鉛直
重心	(kN)	距離	距離	(N)	距離	距離
		(m)	(m)		(mm)	(mm)
機体	470.5	1.4	4.6	27.4	52	154
施工装備	71.5	-2.5	15.9	3.2	102	840
全体	542.0	0.88	6.08	30.5	36	225
平均接地圧力	101kPa			90kPa (25g 場)		
安定度	8			10 (任意に設定可能		
走行速度	1.1km/h (=30cm/sec)					

キーワード くい打機,転倒事故,自走シミュレーション,遠心模型実験

連絡先 〒204-0024 東京都清瀬市梅園 1-4-6 (独)労働安全衛生総合研究所 建設安全研究グループ

写真2 くい打機模型の加速度計位置

前後の車軸とその間に備わる補助輪は筐体からアー ムで支持された片持ち梁構造をしている.これらのア ーム部分にはひずみゲージが貼りつけられており,載 荷荷重を計測できる.リーダーには加速度計を設置し, 走行中の揺動を測定する.

3) 模型地盤の支持力と分布

実験容器内に幅 250mm 長さ 490m の模型地盤を作製 し、くい打機模型を走行させた.模型地盤は最適含水 比の関東ロームを模型地盤と同じ面積を有する載荷板 を介して 150kPa の圧力で静的に締め固めて作成した.

図1は模型地盤における載荷圧力(q)-沈下比(s/D)関係 を示す.ここで,qは荷重を載荷面積(A)で除した値で あり,Aは30mm×30mmの正方形である.s/Dは沈下 量(s)を辺長(D)で除した値である.sは1mm/minの定速 で与えた.載荷初期のs/D<0.02はs/D増分に対するq増分は大きく,直線的な関係がみられる.その後,屈 曲点が現れるが,明確なピークは示さない.屈曲点前 後の2つの接線の交点を極限支持力(q_u)と定義すると, q_u は約270kPaである.

図 2 は模型地盤における平面的な強度の分布特性を 調べるために行ったミニベーン試験の結果を示す.本 試験は 5cm 間隔の格子状に 45 カ所で実施し,得られた 抵抗値から換算してせん断強度(τ_i)を求めた. τ_i の値は 56kPa から 144kPa の間に分布し, 109.2kPa が平均値で あり 120kPa が最大頻度である.変動係数は 0.2 である.

図1 関東ローム模型地盤の載荷 応力(q)と沈下比(s/D)の関係 持

図 2 ベーン試験による 換算せん断強度の変動分布

4) 機体の設定安定度と自走実験の方法

くい打機模型に異なる安定条件を与えて自走させ, 走行挙動を比較した.実験条件を表2に示す.安定度(a) とは車両系建設機械構造規格で定められた機械の安定 基準である.安定可能な傾斜角を意味するものであり, この値が増加すると機体の安定性は高くなる.くい打 機では a が5 度以上と定められている.今回の実験で a が5 度と 10 度を比較するとともに,同一安定度におい て異なる重心距離,すなわち,高重心と低重心の場合 の比較を行った.

履帯における接地圧力の最大値は q_uの 1/2 程度以下 となるように,走行は 5g の遠心力場で実施した.

表3実験名称と機体の安定条件

実験名称	安定度, a (deg)	前輪からの重心距離, <i>l</i> (cm)
Cs1	10	13.4
Cs2	10	23.9
Cs3	5	32.4

3. 遠心場走行における計測と機体揺動

遠心実験における計測結果の一例を図3に示す.模型の移動距離をポテンションメータにより計測すると 共に,機体の揺動を加速度計で計測した.また,詳細 は別報⁴に譲るが車軸と補助輪における載荷荷重から 履帯における接地圧力の分布を解析すると共に,高速 度カメラによる運動解析を行った.図4 は機体揺動の 周波数分布を比較して示す.卓越周波数は1.2Hz と 2Hz 付近に現れ,安定度に比べて重心位置の違いによる影 響が見られる.くい打機の安定性に与える機体側と地 盤側の要因について今後詳細を検討する予定である.

謝辞:本研究は厚生労働科学研究費補助金において得 られた成果であり,関係各位に対し,謝意を表します. 参考文献:1)香川崇章:度構造物の模型振動実験における相似則,土木学 会論文報告集,第275号,pp.69~77,1976.2)玉手 聡:移動式クレーン の安定接地に必要な地盤の支持力要件,産業安全研究所安全資料, NIIS-SD-NO.22,2006.3)堀智仁,玉手聡:自走式杭打ち機械模型の作製 と遠心場走行シミュレーション,土木学会第63回年次学術講演会講演集 CDROM,pp.151-156,2008.4)前田周吾,末政直晃,玉手聡,堀智仁:く い打ち機の自走挙動に関する実験的検討,土木学会第64回年次学術講演 会講演集 CDROM,投稿中,2009.