しらすの締固め曲線に関する一考察

- 鹿児島県企画課世界文化遺産登録推進室 正 会 員 ○宮本 裕二
 - 鹿児島大学大学院理工学研究科 学生会員 宇都 洋一
 - 株式会社ダイヤコンサルタント 正 会 員 荒木 功平
- 立命館グローバル・イノベーション研究機構 正 会 員 洒匂 一成 良介

鹿児島大学大学院理工学研究科 正 会 員 北村

S_{r max}

 S_{ropt}

S ...

 $S_{r \min}$

突固め

 S_r

1. はじめに

北村ら1)は最近20年余にわたって行ってきた不飽和土の力学挙動に 関する実験的・理論的研究の成果を取りまとめ、不飽和土質力学の体 系化を目指しており、不飽和土の力学的挙動を定量的に評価するため に,実験的・理論的研究を相互補完的に行っている。その一つとして, 荒木,北村2)は締固め試験から得られたデータを入力パラメータとし 飽和原 て締固め曲線をモデル化している(KITA-ARAモデル)。

本稿では、しらすの突固め試験結果の考察とともにKITA-ARAモデ ルによる締固め曲線の計算結果と比較し,モデルの妥当性を検証する。

2. 締固め曲線のモデル化(KITA-ARA モデル)

KITA-ARAモデルでは、図-1に示す飽和度Sr~含水比w関係に着目 し、 増分比(*dSr/dw*)の分布を確率密度関数(正規分布を仮定)とみな し、次式によりパラメータを求めている。

$$\frac{dS_r}{dw} = f_{ND}(w) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(w-w_m)^2}{2\sigma^2}\right\} \cdots (1) \quad \sigma = \frac{e_m \rho_w}{\sqrt{2\pi} K \rho_s} \cdots (2) \quad K = \frac{e_m \rho_w}{\sqrt{2\pi} K \rho_s} \cdots (2) \quad K = \frac{e_m \rho_w}{\sqrt{2\pi} K \rho_s} \cdots (2) \quad K = \frac{e_m \rho_w}{\sqrt{2\pi} K \rho_s} \cdots (5)$$

ここに, fwr(w):正規分布の確率密度関数, Wm: 含水比の平均值, Srmin: 最小飽和度, Srmax: 最大飽和度, $e: f_{NT}(w)$ 最大に対応する間隙比, $\rho_{W}: x$ の密度, $\rho_{s}:$ 土粒子密度, pdmax:最大乾燥密度, pd:乾燥密度, Wopt:最適含水比

3. しらすの締固め試験

表-1 は突固め方法の種類³である。A.B 法は締固めエネルギーEe≒5 50(kPa), C,D,E 法は Ec=2,500(kPa)である。試料は鹿児島県内(川 内川:薩摩川内市河川堤防(二次しらす),西光寺:霧島市道路工事(地 山・軟質・二次しらす)、妙見:霧島市トンネル工事(地山しらす))で採取 したしらすである。表-2に室内試験結果とKITA-ARAモデルの入力パ

					· · · — ·									- • ////	NULK C
物性値		川内川(二次)					西光寺			妙見		_ 25	$\left \cdot \right $	△] ■]	内川B−c 内川C−c
		Ec550(kPa)		Ec2500(kPa)			地山	軟質	二次	地山		່ <u>%</u>		★ 川 ● Ⅲ	内川D-c 内川E-c
		A−c	B-c	C-c	D-c	E-c		A−c		A−a	A-b	 ™		+ 西	光寺地山A 光寺軟質A
土粒子密度 ρ_s		2.407	2.407	2.407	2.407	2.407	2.432	2.622	2.596	2.446	2.456	ີ ຼີ 15	\square	▲西	光寺兵員A 光寺二次A
最大乾燥密度 ρ_{dmax}		1.253	1.275	1.361	1.344	1.324	1.285	1.435	1.444	1.402	1.387	ال ال ال		◎妙	^{克A−a} 見A−b
最適含水比w _{opt}		0.264	0.261	0.200	0.245	0.247	0.287	0.274	0.239	0.227	0.166	Ê, Î			
間隙比e _{opt}		0.921	0.888	0.769	0.791	0.818	0.893	0.827	0.798	0.745	0.770	[∼] 5	-	_	
入力 パラメータ	Sr _{max}	0.780	0.860	0.850	0.900	0.860	0.900	0.940	0.940	0.850	0.750	0			
	w _m	0.215	0.180	0.145	0.180	0.180	0.230	0.225	0.198	0.170	0.150	0	~	-	10
	e _m	0.610	0.660	0.660	0.630	0.660	0.770	0.560	0.590	0.480	0.480		U	5	10
	e1	0.670	0.690	0.750	0.670	0.690	0.63	0.570	0.600	0.610	0.610			E	ন ন

表-2 室内試験結果と入力パラメータ

締固め,不飽和土

連絡先 〒890-8577 鹿児島市鴨池新町 10-1 鹿児島県企画課世界文化遺産登録推進室 TEL099-286-2111

— *S* r min 含水比 1 飽和度-含水比関係とモデルパラメータ 1 $-S_{r\min}$ 突固め試験方法の種類3) ランマー

w"

Wopt

 $S_r = C_1 w - S_{r\min}$

S = C w

<u>dS</u>; 最大 (C_{max})

 $S_{u} = C_{1}w$

 $S_r = C_{opt} w$

w

方法の 呼称	質量 (kg)	内径 (cm)	突固め 層数	りの突固め回数	計存取八 粒径 (mm)					
Α	2. 5	10	3	25	19					
В	2. 5	15	3	55	37.5					
C	4. 5	10	5	25	19					
D	4.5	15	5	55	19					
Е	4.5	15	3	92	37.5					

組み合わせの呼称 試料の準備方法及び使用方法 а 乾燥法で繰り返し法 b 乾燥法で非繰り返し法 湿潤法で非繰り返し法 С

ラメータ, 図-2には最適 含水比 Wopt と入力パラメ 1.25 ータ Wmの関係を示して ື້ອ いる。図より Wopt と Wm 1.15 0 1.10 との相関がみられること 倒 1.05 恝 から, パラメータ Wmが Woptから推定可能と考え 0.95 られる。

1.40

1.35

1.30

1.20

1.00

0.90

図-3 には川内川しらすの突 固め試験の実験値と KITA-A RA モデルによる締固め曲 線の計算値の比較を示して いる。図より Srmax は、A-c 法において最小値(78%), E-c 法で最大値(90%)となり, 9 Ecが大きいほど締固め曲線 は Srmax 曲線に沿って左上方 に位置し, pdmax が増加, Wopt が低下することがわかる。

図-4 は図-3 の実験値に ρdmax 85%以上の管理基準及 び現場転圧を併記したもの である。図より現場転圧によ るpdmaxはA,B法での管理基 準を満たすが, C,D,E 法を 採用した場合,管理基準を満 たしていないことがわかる。

図-5, 図-6には西光寺しら すの粒径加積曲線、突固め試験

の実験値(A-c法)と計算値の比較を示す。図より細粒分の 少ない地山しらすが最もpdmaxが小さいことがわかる。

図-7、図-8には妙見しらすの粒径加積曲線、突固め 試験(A-a法,A-b法)の実験値と計算値の比較を示 している。図-7より締固め試験により粒子破砕がおこ り細粒分の増加がみられる。図-8よりa法がb法に比べ同 じ乾燥密度でも含水比が大きいことがわかる。

本稿で示したしらすの突固め試験の実験値と締固 め曲線の計算値(図-3,6,8)は、ほぼ近い値を示してお り、提案するKITA-ARAモデルが、しらすの締固め曲線 を定量的に評価できることがわかる。

4. おわりに

本稿ではしらすの突固め試験結果を考察し、KIT A-ARA モデルの妥当性を検証した。 Eeと KITA モ デルによる変形解析と関連づけた定量的評価が今 後の課題である。

参考文献

- 1) 北村良介,酒匂一成,荒木功平,宫本裕二:不飽 和土の力学挙動のモデル化,第44回地盤工学研究 発表会, 2009(投稿中).
- 2) 荒木功平,北村良介:不飽和土の締固め曲線と 水分特性曲線の関係、第50回地盤工学シンポジ ウム、pp.83-90、2005.
- (社)地盤工学会編:土質試験の方法と解説-第1回 改訂版-,pp 252-255, 2000.