京都大学大学院	学生会員	○松本	真明
京都大学大学院	フェロー会員	岡	二三生
京都大学大学院	正会員	木元 /	小百合
京都大学大学院	正会員	肥後	陽介
中日本高速道路 (元 京都大学大学院)	正会員	矢吹	太一

1. はじめに

本研究では、地震時における不飽和地盤の力学特性 の把握を目的とし、排気・排水条件下での不飽和繰返し 三軸試験を行い、諸条件が挙動に及ぼす影響について 検討を行った。また、不飽和モデルの構築を目的とし て不飽和土の繰返し弾粘塑性構成式を用いて排気・排水 試験結果の再現を試みた。

2. 試験概要

本研究では、淀川の堤防の改修に用いられている砂 質土を試料として用いた。三軸試験では、2 mm以下にふ るい分けを行った試料で試験を行った。また、供試体 は、最適含水比 13.7%に調整したものを、高さ 100 mm、 直径 50 mm、締固め度が 85%、90%となるように、静的 締固め機を用いて締固めた。供試体諸量は表1に示す。

せん断開始後の体積変化を 測定するため,側方変位を 計測するギャップセンサー をセル内に設置¹⁾した。ま た,供試体上部で間隙空気 圧を計測するためポリフロ ンフィルターを,下部で間 隙水圧を計測するためセラ

表1供試体諸量				
締固め度 (%)	85	90		
高さ(cm)	10.0			
直径(cm)	5.0			
体積 (cm ³)	196.3			

353.1

53.4

0.602

373.9

61.9

1.697

欧水圧な計測ナスためわら	间隙比	0.682	0.589
原小庄を計測するにのビノ			
ミックディスク(A.E.V. 200	kPa) 付きの	ペデス	タル
を用いた。より正確に間隙空	ミ気圧を測定	するため	り,間
隙空気圧計を供試体上部のキ	・ャップに取	り付け,	供試
体から間隙空気圧計までの距	離を短くして	こある。	

試験条件は、セルE 300kPa,空気E 200kPa,初期サ クション 0,10,50kPa,応力振幅 50,60kPa,ひずみ 速度 0.1,0.01,0.75%/min,繰返し回数 50回とした。

3. 応力変数

混合体理論に基づき、応力変数として次式で表され る平均骨格応力 $\sigma''_m ^{2(3)}$ を用いて、試験結果を整理した。 $\sigma''_m = \sigma_m - P^F = \sigma_m - [(1 - S_r)u_a + S_r u_w]$ (1) ここで、 P^F は平均間隙圧、 u_a は間隙空気圧、 u_i は間 キーワード 不飽和土、繰返し載荷、サクション 隙水圧, S_r は飽和度, σ_m は平均全応力である。

4. 試験結果

図1に排気 - 排水条件下でのひずみ速度 0.1%/min, 締固め度 85%,応力振幅 50kPa,初期サクション 0kPa, 50kPaのケースの試験結果を示す。応力-ひずみ関係よ り,初期サクション 0kPaのケースでは,繰返し載荷1 回目に軸ひずみが大きく発生し,伸張側が特に大きく なった。初期サクション 50kPaのケースでは,初期サ クション 0kPa のケースよりも軸ひずみの発生が抑え られている。軸ひずみ-体積ひずみ関係より,初期サク ション 0kPaのケースでは,大きく体積ひずみが発生し ている。一方,初期サクション 50kPaのケースでは, 体積ひずみの発生量が抑えられている。

5. 不飽和繰返し弾粘塑性構成式

本研究では、渡部 心により提案された不飽和繰返し弾 粘塑性構成式を用い、応力振幅 50kPa, 締固め度 85% の排気 - 排水試験結果の再現を試みた。構成式の定式 化については以下の通りである。

過圧密境界面

 $f_{b} = \overline{\eta}_{(0)}^{*} + M_{m}^{*} \ln(\sigma'_{m} / \sigma'_{mb}) = 0$ (2) ここで、 σ'_{mb} は硬化パラメータ、 \widetilde{M}^{*} はダイレイタン シー係数であり、次式のように表される。

$$\widetilde{M}^{*} = \begin{cases} \left(\frac{\sigma'_{m}^{*}}{\sigma'_{mb}} \right) M_{m}^{*} & : \text{ BET are figure } \\ M_{m}^{*} & : \text{ ET ALE are figure } \end{cases} \tag{3}$$

 M_m^* 静的降伏関数

$$f_{y} = \overline{\eta}_{\chi}^{*} + \widetilde{M}^{*} \ln(\sigma'_{m} / \sigma'^{(s)}_{my}) = 0$$
(4)
粘塑性ポテンシャル関数

$$f_{p} = \overline{\eta}_{\chi}^{*} + \widetilde{M}^{*} \ln(\sigma'_{m} / \sigma'_{mp}) = 0$$
(5)

比テンソルであり次式で定義される。

$$-*$$
 ((* *) * *) $^{1/2}$ (c)

$$\overline{\eta}_{\chi} = \{ (\eta_{ij} - \chi_{ij}) | \eta_{ij} - \chi_{ij} \}$$

$$\{ \mathbf{k}_{ij} \in \mathbf{X} \}$$

$$d\chi_{ij}^{*} = B^{*} \left(M_{f}^{*} de_{ij}^{vp} - \chi_{ij}^{*} d\gamma^{vp^{*}} \right)$$
(7)

ここで,
$$M_f^+$$
は破壊応力比, $de_{ij}^{
u}$ は粘塑性偏差ひずみ

連絡先 〒615-8540 京都市西京区京都大学 4C クラスターC1 棟 TEL 075-383-3193

増分テンソル, $d\gamma^{vp^*}$ は粘塑性偏差ひずみテンソルの第 2 不変量である。

流れ則

粘塑性流れ則により、粘塑性ひずみ速度が次式より 求まる。 、 、 ∂f 。

$$\dot{\varepsilon}_{ij}^{vp} = C_{ijkl} \langle \Phi(f_y) \rangle \frac{s_p}{\partial \sigma'_{kl}}$$
(8)
サクションの効果

本研究ではサクションの効果を次式で考慮している。

$$\sigma'_{mb} = \sigma'_{ma}(z) \exp\left(\frac{1+e_0}{\lambda-\kappa}\varepsilon_{kk}^{vp}\right) \left[1+S_I \exp\left\{-s_d\left(\frac{P_i^C}{P^C}-1\right)\right\}\right]$$
(9)

$$=\sigma'_{ma}(P^{C},z)\exp\left(\frac{1+e_{0}}{\lambda-\kappa}\varepsilon_{kk}^{vp}\right)$$
(10)

 $\sigma'_{ma}(z) = \sigma'_{maf} + (\sigma'_{mai} - \sigma'_{maf}) \exp(-\beta \sqrt{z})$ (11) ここで, P_i^c は基準サクション, P^c は現在のサクシ ョン, S_I は P_i^c が作用している時の強度増加率, s_d は 強度の変化速度を調節するパラメータである。 6. シミュレーション結果

シミュレーションに用いたパラメータを表2に,結 果を図1に示す。応力・ひずみ関係において,初期サク ション0kPaのケースでは,初期に軸ひずみが大きく発 生し,載荷とともに軸ひずみの増加が緩やかになって いく様子が再現できた。初期サクション50kPaのケー スに関しては,軸ひずみの発生が抑えられている様子 が再現できた。軸ひずみ・体積ひずみ関係において,初 期サクション0kPaのケースでは,体積ひずみが徐々に 増加していく様子が再現されている。しかし,繰返し 載荷1回目に体積ひずみがほとんど発生していない様 子については,再現できていない。これは,排気・排水 試験を行ったが,せん断初期において供試体内部は, 非排気・非排水状態に近くなっていた可能性がある。初 期サクション50kPaのケースに関しては,繰返し初期 にせん断前より体積膨張を示した様子がよく再現でき

Degree of compaction (%)	85			
Deviator stress amplitude (kPa)	50			
Strain rate (%/min)	0.1			
Initial suction, s (kPa)	0	10	50	
Compression index, λ	0.0804			
Swelling index, κ	0.0090			
Initial void ratio, e_0	0.652	0.656	0.660	
Initial elastic shear modulus, G_0 (kPa)	15000	16000	20000	
Initial value for σ'_{ma} , σ'_{mai} (kPa)	150			
Initial yield stress, σ'_{mbi} (kPa)	150	159	180	
Stress ratio at critical state, M_{fc}^*	1.18			
Stress ratio at critical state, M_{fe}^*	0.978			
Viscoplastic parameter, m'	40.0			
Viscoplastic parameter, C_{01} (1/s)	$1.0 imes10^{-5}$	$5.0 imes10^{-6}$	$5.0 imes10^{-6}$	
Viscoplastic parameter, C_{02} (1/s)	$1.5 imes10^{-5}$	$1.0 imes 10^{-5}$	$5.0 imes10^{-6}$	
Structural parameter, σ'_{maf} (kPa)	60	80	80	
Structural parameter, β	3.0	1.0	1.0	
Material parameter, B^*	80			
Material parameter, B_1^*	15			
Material parameter, C_f	2			
Suction parameter, S_I	0.2			
Suction parameter, s_d	0.4			
Initial mean abalatan atrasa π' (laBa)	100	107	196	

ている。 表2 材料パラメータと初期条件

7.まとめ

試験結果については,初期サクションが大きい方が 軸ひずみ,体積ひずみともに発生量が抑えられ,サク ションにより変形強度が増加した。シミュレーション 結果は,比較的よく実験結果を再現している。

参考文献

1)Kim, Y. S. : *Elasto-viscoplastic Modeling and Analysis for Cohesive Soil Considering Suction and Temperature Effects*, Doctoral thesis, Kyoto University, 2004.

2)Jommi, C. : *Experimental Evidence and Theoretical Approaches in Unsaturated Soils*, Tarantino, A. and Mancuso, C. eds., Balkema, 139-153, 2000.

3)Oka,F. et al.:Proc. 1st European Conference on Unsaturated Soils, Durham, Taylor & Francis Group, pp.735-741,2008.

4)渡部泰介:弾粘塑性構成式による不飽和シルトの繰返 し三軸試験のシミュレーション,土木学会第62回年 次学術講演会,2007.