岐阜大学工学部	国際会員	原隆史
岐阜大学工学部	正会員	辻慎一朗
岐阜大学工学部	国際会員	八嶋厚
前田工繊株式会社	正会員	竜田尚希

1. はじめに

ジオテキスタイルを用いた補強土は,擁壁のように独立した 構造物を構築することができる.しかし,これまで補強土は直 接基礎で構築され,補強土の水平抵抗は直接基礎底面で負担し ており,杭基礎の適用は検討されてこなかった.このため,地 震力や土圧などの大きな水平力を受ける補強土擁壁の底面は大 きな幅が必要となり,その適用は構築スペースの確保が可能な 現場に限定され,特に斜面上など,構築スペースの確保が可能な 現場に限定され,特に斜面上など,構築スペースの確保が困難 な場合には,合理的な補強土が適用できずにいた.そこで本研 究では,大きな靭性を持つ補強土とたわみ性に富む鋼杭を一体 化させた,杭を有する補強土の適用を提案する.ここでは,動 的遠心模型実験と数値解析により杭と補強土の動的相互作用を 解明し,斜面上の盛土の耐震対策への適用性を検討する.

2. 動的遠心模型実験

(1) 実験概要

杭を有する補強土の斜面上の盛土の耐震対策への適用性と, 杭と補強土の動的相互作用を確認するため,動的遠心模型実験 (25G)を行った.実験模型の断面図と計測センサーの配置を 図-1(a)に示す.1.0m×1.0mの土槽を中央で仕切り,斜面上に 杭を配置した補強土と杭のない補強土を構築し、その背面に斜 面上の盛土を構築した.斜面はソイルモルタル(一軸圧縮強度: 約 100kN/m²)で構築し,盛土と補強土は珪砂8号(含水比:4%, 相対密度:60%)で構築した.補強材は実際の補強材の初期剛 性(800kN/m)に等価な引張剛性を持つポリプロピレン製のネ ットを使用した.杭はH300×300×10×15のH型鋼を補強土の 延長方向に 2.5m 間隔で設置することとし、これに等価な曲げ剛 性を持つ幅 12mm×厚さ 8mm の鉄製の棒材を使用した. 杭と補 強材にはひずみゲージが貼付してある.また,補強土から杭へ +分に荷重が伝達されるように,図-1(b)に示すように,補強土 1層ごとに杭の延長方向に沿って補強材を配置した.入力加速 度は,兵庫県南部地震神戸海洋気象台 NS 波形とした.

(2) 実験結果

加振後の路面の状況を写真-1 に示す. 杭のない補強土を設置

[125 280 変位計 □ 土圧計 □ 加速度計 140 🗖 (a) 断面図 枯 補強材 (b) 杭への補強材の配置 図-1 実験模型 杭あり 杭なし 加振後の路面の状況 写真-1 100 (m²) NY) 50 枯あり 王 十 0 0 20 30 10 時間 (sec) 補強土背面土圧の時刻歴 図-2 600 $\overline{}$ 400 ц П 200 ひずみ 0 20 30 10 -200 時間 (sec)

補強材のひずみの時刻歴

図-3

キーワード 杭,補強土,盛土,耐震対策 連絡先 〒501-1193 岐阜市柳戸 1-1 岐阜大学工学部社会基盤工学科 TEL 058-293-2462 した側の路面では,多数のクラックが発生していた.一方,杭 を配置した補強土を設置した側では,路面に大きな変状は確認 されなかった.補強土背面で計測した土圧の時刻歴を図-2 に, 杭の延長方向に配置した補強材のひずみの時刻歴を図-3 に示す. 杭を配置した補強土は,杭を配置しない場合に比べて,補強土 の背面で大きな土圧を支持している.また,杭の延長方向に配 置した補強材には大きなひずみが発生しており,補強土から杭 へ荷重がスムーズに伝達されていると考えられる.補強土と杭 の最大応答時と加振後における変位分布と,杭の有無による補 強土前面の変位分布を図-4 に示す.杭を配置した補強土の残留 変位は,杭を配置しない場合に比べて小さくなる.また,最大 応答時には杭と補強土は一体となって挙動し,補強土の大きな 靭性により破壊せずに杭に荷重を伝達していることを確認した. 3.数値解析

(1) 杭の3次元効果

杭の3次元効果を考慮するため,3次元静的 FEM 解析から, 動的2次元 FEM 解析における杭の3次元効果を設定すること を試みる.解析に用いる物性定数を表-1に示す.3次元解析に おける有限要素分割図を図-5に示す.杭に最大の応力が発生す る応力分布を,補強土背面の荷重強度を調整して再現した静的 3次元解析と,これと同じ条件でモデル化した静的2次元解析 を行って求めた杭の変位分布の比較を図-6に示す.2次元解析 による杭の変位は,3次元解析によるものと比較して約2倍と なっている.これは,実際には,補強土が抵抗する部分と杭が 抵抗する部分があるのに対し,杭を壁状にモデル化した2次元 解析ではすべてを杭が負担するためである.したがって,2次 元解析の杭が余計に荷重を負担し,過度な変位と応力が発生し ているため,補強土の変位と杭に発生する応力を推定する場合 には,本モデルの場合では,杭の剛性を1/2 とすればよいと考 えられた.

(2) 杭と補強土の地震時の挙動

杭の3次元効果を考慮した2次元動的 FEM 解析による補強 土の残留変位,杭の最大応答変位と曲げモーメント分布の解析 結果を図-7に示す.数値解析は計測値を概ね再現しており,2 次元動的 FEM 解析による杭の3次元効果の妥当性と設計への 適用が可能であることを確認した.

4. おわりに

杭と補強土を一体化させることによって,補強土の水平抵抗 を大きく向上させることができ,斜面上の盛土の耐震対策など への適用が可能であることを確認した.また,杭と補強土の挙 動は2次元動的 FEM 解析により再現でき,今後,設計方法を検 討する.

図-5 3次元有限要素分割図

