GRS-体橋梁の設計法について(その2)

鉄道総合技術研究所

正会員 〇白仁田和久 舘山 勝 小島謙一 神田 政幸

渡辺 健治

1. はじめに

現在,インテグラル橋梁における背面土を補強土構造とし躯 体と一体化させた、より高性能なインテグラル橋梁として、ジ オシンセティックス補強土(Geosynthetic-reinforced Soil) 一体橋梁(以下, GRS 一体橋梁)の開発を行っている¹⁾.

これまでの模型振動台実験等により,高い耐震性が得られる ことを確認しており^{2),3)},現在は、実用化に向けて施工試験等 を行っている.本論文では、これに先立って行った耐震試計算 での感度分析について、その概要を述べる.

2. 耐震試計算

2.1 概要

解析は、補強材、背面地盤およびフーチング底面を非線形の ばね要素として, RC部材を非線形棒要素として考慮し, 静的 非線形解析を行った(図1). 基本ケースにおける解析条件を 図2に示す.橋梁寸法は,桁長 14.75m, 壁高 4.65m, 幅員 3.0mであり、桁断面は高さ900の矩形断面である.また、桁 長,支持地盤,ばね定数等の条件を変えたケースについても耐 震試計算を行った.この時の検討ケースを表1に示す.これら の結果を以降に述べる.

2.2 基本ケース

基本ケースでの荷重変位曲線を図3に示す.最初の部材降伏 発生後も震度は漸増し、ある部材がM点に達すると同時に変位 の増加が急激になり、すぐさまN点に達することがわかる.こ れは、弾性床上の梁となるモデルの影響であると考えられる. 表1に示す配筋量は,壁部,桁部共に外観に対する使用性の照 査で決まっている. それにも関わらず, 高い耐震性を示してお り、ラーメン構造の利点が発揮されていることが確認された.

2.3 桁長に対する検討

桁長を 20.0m, 30.0m, 40.0m とした場合の検討結果を図 4 に 示す. 桁長が 30.0m, 40.0m のものについては, 桁の断面形状 を中空としたものも検討した.この際,部材の降伏点がほぼ同 等となるように配筋量を調整しており,その結果を基本ケース と対比して表2に示す.今回の検討では、列車荷重を考慮して いないが,桁の断面形状を中空にし,桁高を増す等適切な検討

図 1 解析モデル

表1 検討ケース									
	桁長	桁断面 形 状	支持地盤	バネ定数	バネ定数 の上限値				
Case1	15m	矩形	N=50	1.0*	1.0*	基本ケース			
Case2-1	20m	矩形	N=50	1.0*	1.0*	桁長比較			
-2	30m	矩形	N=50	1.0*	1.0*				
-3	40m	矩形	N=50	1.0*	1.0*				
-4	30m	中空	N=50	1.0^{*}	1.0^{*}				
-5	40m	中空	N=50	1.0^{*}	1.0^{*}				
Case3-1	15m	矩形	N=20	1.0*	1.0*	支持地盤比較			
-2	15m	矩形	N=30	1.0*	1.0*				
Case4-1	15m	矩形	N=50	0.1*	1.0*				
-2	15m	矩形	N=50	0.1*	1.0*	バネ定数比較			
-3	15m	矩形	N=50	0.1*	1.0*				
Case5-1	15m	矩形	N=50	1.0*	0.1*	. « .h 			
-2	15m	矩形	N=50	1.0^{*}	0.1*	バネ定数 上限値比較			
-3	15m	矩形	N = 50	1.0*	0.1*				

キーワード: GRS 一体橋梁,新構造形式,設計法,インテグラル橋梁,補強土

連 絡 先:〒185-8540 東京都国分寺市光町 2-8-38 (財)鉄道総合技術研究所 TEL:042-573-7261

を行えば、断面耐力的には L=30.0m 程度まで適用可能であると 考えられる.しかし、実設計においては、走行安全性(たわみ 量)の照査において、断面が決定される場合もあるので、今後、 たわみ量の確認を行う.

2.4 支持地盤に対する検討

支持地盤のN値を 20,30 とした場合の検討結果を図5に示 す.図より支持地盤のN値の違いによる荷重変位曲線の違いは、 地盤降伏の発生震度が違う以外には、大きな違いが見られない.

2.5 ばね定数に対する検討

先ず,補強材および背面地盤のバネ定数を基本ケースの 1/10 とした場合の検討結果を図6に示す.図より,補強材の バネ定数の低減の方が背面地盤バネ定数の低減より,影響が大 きいことがわかる.

次に、補強材および背面地盤のバネ定数の上限値を基本ケースの1/10とした場合の検討結果を図7に示す.図より、背面地盤のバネ定数の低減の方が補強材バネ定数の低減より、僅かではあるが影響が大きいことがわかる.また、両ばね乗数の上限値を同時に基本ケースの1/10とした場合は、基本ケースと比べ水平震度が1/4まで低減することが分かる.

図6,7より,ばね定数の低減より,ばね定数の上限値の低 減の方が,影響が大きいことが分かる.

3. おわりに

今回, GRS 一体橋梁の耐震設計における抵抗側のパラメータ スタディを行った. その結果, ばね定数の上限値に対する感度 が高いことが確認された. 今後は, 作用側にもある未確定の要 素も含め, これらの検討を十分に行った上で, 実設計に耐えう る解析モデルの提案を行いたい. 最後に, 本橋梁の開発にあた り,ご指導頂いている龍岡先生並びに共同開発者である鹿島建 設, 東急建設, 鉄建建設, 複合技術研究所, クラレの関係各位 には, ここに記して感謝の意を表します.

参考文献

 1) 龍岡文夫:ジオシンセティック補強土一体橋梁,橋梁と基礎, pp55-62, 2008.1

2)野尻峰広,相澤宏幸,平川大貴,錦織大樹,笹田泰雄,龍岡文夫,渡辺健治,舘山勝:模型振動台実験による各種橋梁形式の崩壊メカニズムの検討,ジオシンセティックス論文集, Vol21, pp159-166, 2006.12

3) 平川大貴,相澤宏幸,錦織大樹,相馬亮一,園田陽介,龍岡文夫:GRS 一 体橋梁の気温変動を想定した水平繰返し載荷時の変形特性,ジオシンセティ ックス論文集, Vol22, pp83-90, 2007.11

表2 配筋量

<i>L</i> /~ ≓	地にフロアメリト	壁	部	桁部	
桁長	町面形状	主筋	帯筋	主筋	帯筋
L=15.0m	矩形 3000*900	10-D19	12-D16	10-D22	12-D16
L=20.0m	矩形 3000*900	10-D29	12-D19	10-D29	12-D19
L=30.0m	矩形 3000*900	10-D41	12-D32	10-D41	12-D32
L=40.0m	矩形 3000*900	20-D51	12-D38	20-D51	12-D38
L=30.0m	中空 3000*900	10-D38	12-D32	10-D38	12-D32
L=40.0m	中空 3000*900	10-D51	12-D38	10-D51	12-D38

