GRS-体橋梁の設計法について(その1)

(株)複合技術研究所

所研究所 正会員 〇山田 康裕,矢崎 澄雄,鈴木 聡

駆体

ジオシンセティックス補強材

図1 GRS 一体橋梁概要図

14.75m

GRS 一体橋梁

チブロック

プロー

盛土

1. はじめに

現在,インテグラル橋梁(桁と橋台が一体化した橋梁)の 背面土を補強土構造とし躯体と一体化させた,より高性能な インテグラル橋梁として,ジオシンセティックス補強土

(Geosynthetic-reinforced Soil) 一体橋梁(以下,GRS一体 橋梁)の開発を行っている(図1).¹⁾本構造によりインテグ ラル橋梁の特徴である,ラーメン構造による断面形状のスリ ム化および支承部の省略により,初期建設コストや維持管理 コストが縮減可能な構造物を構築することが出来る.

本橋梁の実用化に向けて実物大による載荷試験(写真1) を予定しているが、本論文はその実物大試験用のGRS一体 橋梁に対して行った設計について、その概要を述べる.

2. 設計

2.1 設計概要

GRS一体橋梁の設計は,既に設計法が確立されているセ メント改良補強土橋台²)(以下,補強土橋台)の設計とラー メン高架橋の設計³⁾を組合せることにより可能である.設計 は,図2に示すように補強材引張力,フーチング底面の水平 および鉛直地盤反力,橋台背面地盤の受働土圧等の抵抗力を 節点ばねとしてモデル化し,一次元骨組み解析により行う. 節点ばねをバイリニア型,RC部材をテトラリニア型の非線 形要素とし,静的非線形解析により断面力の算出を行い,鉄 筋コンクリート部材および補強材の耐力照査を行う.

写真1

2.2 設計条件

今回の設計では、橋台部、桁部の断面高は、剛比の影響を無くすため、統一することとしたが、桁と橋台部の接 続部にはハンチを設けた.限界状態は、永久荷重のみを考慮した長期使用限界、列車荷重を考慮する使用、終局限 界、地震による影響を考慮したL1,L2地震時とした.作用の組合せを表1に示すが、使用限界状態には、インテ グラル橋梁の特徴である桁部の温度変化による作用を考慮することとした.地震時の作用状態を図3に示す.

作用	限:	界状態	長期使用 限界	使用限界1 温度膨張時	使用限界 2 温度収縮時	使用限界3	終局限界	L1 地震時	L2 地震時
作用の種類	固定死荷重	D1	1.0	1.0	1.0	1.0	1.1	1.0	1.0
	軌道荷重	D2	1.0	1.0	1.0	1.0	1.2	1.0	1.0
	永久荷重としての土圧	ED	1.0	1.0	1.0	1.0	1.0		
	変動荷重としての土圧	EL	—	1.0	1.0	1.0	1.0	—	—
	列車荷重	L	—	—	—	1.0	1.1	—	—
	衝擊荷重	Ι	—	—	—	1.0	1.1	—	—
	温度荷重		—	1.0	1.0	—	—	—	—
	地震時慣性力	Eo	-	—		—	_	1.0	1.0
	地震時土圧	EOF	—	—	—	—	_	1.0	1.0

表1 各限界状態における作用の組み合わせ

Key Words: GRS 一体橋梁,新構造形式,設計法,インテグラル橋梁,補強土

連絡先 〒102-0072 東京都千代田区飯田橋 4-6-9(ロックフィールドビル 6F) (株)複合技術研究所 TEL 03-5276-5276

2.3 解析結果

各限界状態における桁と橋台部の接続部および桁中央部の 断面力の算出結果は図4に示すとおりであり,せん断力は各 限界状態とも同等程度発生するが,曲げモーメントはL2地 震時において,桁と橋台部の接続部で,突出して大きく発生 することが分かる.桁および橋台の部材の照査結果は表2に 示すとおりで,躯体の鉄筋量は,耐力照査ではなく,曲げひ び割れの照査により決定していることが分かる.温度変化考 慮時の変形図は図5に示すとおりであり,温度膨張時は橋台 部の殆どの部分が受働側へ変位し,温度収縮時は上端部の一 部のみが主働側へ変位していることが分かる.地震時におけ る荷重変位関係は図6に示すとおりで,橋台背面の地盤ばね

(常時の受働土圧を上限とするバイリニアモデルのばね)が 上限値に到達するとともに変位が進行していく様子が、また、 水平震度Kh=1.0においても、補強材の破断、フーチング底面 の支持力降伏および躯体の降伏が起こらないことが分かる.

3. 本設計による考察

以上の結果より、次のことが確認された.

- ①地震時以外において、考慮する土圧として主働土圧を用いたが、温度膨張時における変形状態からは受働土圧としたほうが適切であるかと思われる。しかしながら、変位量も微量であることから、静止土圧も含めどの土圧を用いるか検討する必要がある。
- ②地震時においては、鉄筋量に比して、高い耐震性が確認できたが、躯体の変形は地盤ばねの降伏とともに進行することから、地震時における地盤ばねの設定を適切におこなうことが必要があり、特に、非線形時の上限値の設定が重要となる。

4. おわりに

今後は、これらの課題に対する検討を行い、設計手法の確 立を進めていく予定である.最後に本橋梁の開発にあたり、 ご指導頂いている龍岡先生並びに共同開発者である鉄道総合 技術研究所,鹿島建設,東急建設,クラレの関係者各位には、 ここに記して感謝の意を表します.

参考文献

- 1) 龍岡文夫:ジオシンセティックス補強土一体橋梁,橋梁と基礎, pp55-62,2008.1
- 運輸省監修,(財)鉄道総合技術研究所編:鉄道構造物等設計標準・同解説 土構造物,丸善,2007.
- 3) (財)鉄道総合技術研究所編:鉄道構造物等設計標準・同解説コン クリート構造物 照査例 RCラーメン高架橋,共進,2008

表2 照査の総括

昭本佰日	照查值				
照直沒自	桁部	橋台部			
曲げ耐力の照査	0.58 < 1.0	0.76 < 1.0			
せん断耐力の照査	0.31<1.0	0.37<1.0			
曲げひび割れの照査	0.91<1.0	0.82<1.0			
せん断ひび割れの照査	0.75 < 1.0	0.69<1.0			
補強材の破断の照査	_	0.75<1.0			

