GFRP 引抜き成形 I 形断面はり部材の耐荷力に関する解析的検討

九州大学大学院 学生会員〇小林憲治,学生会員 大本透 フェロー 日野伸一,正会員 山口浩平

1. はじめに

GFRP(ガラス繊維強化プラスチック)は、その軽量 性や耐食性等から,新たな土木構造材料として期待さ れている. これまで著者らは, 異方性である GFRP 引 抜き成形材の材料特性の把握と部材レベルでの耐荷特 性について検討してきた¹⁾. しかしながら, GFRP はり 部材の破壊は局部座屈に伴う層間破壊であり、設計指 針等の整備や適切な安全係数の採用に不可欠である部 材の終局耐力の評価には至っておらず,その研究事例²⁾ も希少である.本検討では、先に行なった GFRP 引抜 き成形 I 形断面はり部材の曲げ試験の耐荷特性につい て,数値解析により耐荷挙動および局部座屈による終 局耐力の再現を試みた.また,GFRP はり部材の終局耐 力向上に有効な垂直補剛材については、その形状や材 料特性,設置位置など十分に検討されていない. そこ で垂直補剛材の設置位置をパラメータとした解析を行 った.

2. 数值解析概要

試験供試体は図-1 に示すスパン 4000mm, 高さ 600mmのI形断面はり部材である. 600mmの等曲げ区 間を設け, 4 点曲げ漸増載荷を行なった.

4000A は、市販の GFRP 引抜き成形箱形断面部材を 垂直補剛材として,支点部のみに片面につき2本ずつ, 4000B は座屈耐力を向上させるため,支点部に加え載荷 点部に1本ずつ設置した.垂直補剛材は上下フランジ とウェブに密着させエポキシ樹脂により接着した.

解析は汎用プログラム Marc.2005 を使用し,GFRP は り部材と GFRP 垂直補剛材を直交異方性の 8 節点ソリ ッド要素を用い,剛結させてモデル化した.材料特性 値は表-1 に示す値を用い,厚さ方向には均一なものと してモデル化した.材料構成則は,既往研究²⁾を参考 に,各方向について終局ひずみまで線形的に増加後, 速やかに軟化するモデルとした.また,座屈現象再現 のため弾性座屈固有値解析後のモデルを用い,幾何学 的非線形性を考慮した非線形解析を行った. 4000 → 12 600 → 12 600 → 12 600 → 重直補剛材 4000 A:無 1700 300 4000 B:有 図ー1 試験供試体 (単位:mm)

表-1 材料特性值

項目	単位	部位	引抜き 方向	引抜き直角 方向
引張弾性係数	GPa	フランジ	37.6	10.1
		ウェブ	22.6	14.4
		垂直補剛材	30.0	10.1
引張強度	MPa	フランジ	416	134
		ウェブ	325	146
		垂直補剛材	300	134
せん断弾性係数	GPa	フランジ	4. 60	
		ウェブ	4. 60	
		垂直補剛材	4.60	
ポアソン比	-	フランジ	0.24	0.14
		ウェブ	0.28	0.14
		垂直補剛材	0.30	0.14

表-2 解析パラメータ

解析パラメータの一覧を表-2 に、Case8 の解析モデ ルを図-2 に示す. Case1 は垂直補剛材なし、Case2 およ び3 は支点部のみ、Case4 および5 は載荷点部のみに垂 直補剛材を 1~2 本設置した. Case6 および7 は、載荷 点部に1本、支点部には1本もしくは2本垂直補剛材 を設置した. Case8 は、Case6 に加えせん断スパン中間 部にも垂直補剛材を1本設置した.

キーワード GFRP, 局部座屈, 数値解析

連絡先 〒819-0395 福岡県福岡市西区元岡 744 番地 九州大学大学院 TEL 092-802-3392

3. 結果

3.1 実験結果との比較

図-3 にスパン中央部の荷重-たわみ関係を,図-4 にス パン中央部上下フランジの荷重-ひずみ関係を示す.図 中には実験値,はり理論での計算値および解析値を記 載している.図より 4000A,B ともに実験値,計算値お よび解析値は概ね一致していることが確認できる.

実験では4000A,Bともに局部座屈により終局に至っ た時点を,解析では大変形による幾何学的非線形性に より解析が終了した時点を最大荷重とした.本検討で は,実験値の最大荷重に対して解析値が1.7倍程度であ り,成形時に生じた初期不整を解析モデルでは考慮し ていないためと考えられる.実験での局部座屈発生と, 幾何学的非線形性で解析が終了した時点は異なり,局 部座屈に起因する層間破壊で終局に至るGFRPはり部 材の終局挙動の把握には,部材形状寸法を適切に把握 することや,試験体数を増やし最大荷重のばらつきに ついても検討することが不可欠であると考えられる.

3.2 パラメータ解析の結果

パラメータ解析の結果,図-5 に示すように垂直補剛 材の設置位置が最大荷重に大きく影響することが確認 された.載荷点部のみに垂直補剛材を設置した Case4, 5 に比べ,支点部のみに設置した Case2,3 の方が最大 荷重が大きく,また同一箇所での垂直補剛材本数増加 は最大荷重の増加に影響が小さいことがわかる.また, 支点,載荷点部に加えせん断スパン中間部に垂直補剛 材を設置した Case8 は最大荷重の増加が期待できない ことが確認された.Case2,4,6 の垂直補剛材について, 最大発生応力を比較したところ,図-6 に示すように支 点部で鉛直方向に大きな応力が発生しており,支点部 の垂直補剛材が面外方向への横倒れを抑制し,上下フ ランジ間の突張材として機能していると考えられる.

4. まとめ

本検討で得られた結果を以下に示す.

- (1)数値解析により剛性は概ね再現できたが、終局耐力の評価には至らなかった.試験体数の増加や初期不整を適切に考慮したモデルでの検討が必要である.
- (2) パラメータ解析により,垂直補剛材は支点部に設置した場合,最大荷重が向上し,載荷点部にも設置することで大幅な耐力向上が期待できる.

今後は,はり部材の耐荷挙動把握に向け,曲げ試験 を行い終局状態の評価について検証を行なう.

参考文献

- 小林他:GFRP 引抜き成形 I 形断面はりの材料力学 特性および曲げせん断挙動に関する実験的研究,構 造工学論文集, Vol.54A, pp.850-859, 2008.3
- 2) 浅本他:ハイブリッドI型FRP構造部材の曲げ性状 に関する実験的,解析的検討,第7回複合構造の活 用に関するシンポジウム,59,pp.1-6,2007.11