ボルト系半剛結接合の接合部剛性評価に関する一検討

室蘭工業大学大学院 正会員 ○小室 雅人 室蘭工業大学大学院 フェロー 岸 徳光 University of Hawaii W.F. Chen

1. はじめに

本論文では,著者らが実施したトップ&シートアング ル接合に関する実験結果を対象に,代表的な4種類の接 合部剛性評価手法を取り上げ,その妥当性について検 証を行った.

2. 接合部剛性評価

ここでは,初期剛性および曲げ耐力の算定式として, Kishi らによる方法¹⁾,欧州規格である EC3^{2),3)}による方 法,Faella らによる方法⁴⁾,および日本鉄鋼連盟(以下, JISF)による方法⁵⁾に関して,その概要を述べる.

2.1 Kishi らによる方法

Kishi らは, 接合部の非線形な剛性特性を評価するモデ ルとして, 三要素パワーモデルを提案している¹⁾. 図1 (a) にその概形を示している. 3つのパラメータのうち, 初期剛性 R_{ki} , 限界曲げ耐力 M_u に関しては, 簡略な力 学モデルによって, それらの値を算出している. 一方, 残りのパラメータである形状指数 n に関しては力学的 な定式化は困難であるため, 接合部データベースを用

いて、次式のように提案されている.

$$n = 1.398 \log_{10} \theta_0 + 4.631 \ge 0.827 \tag{1}$$

なお,初期剛性 *R_{ki}* および限界曲げ耐力 *M_u* の算定方 法に関しては,文献 1) を参照されたい.

2.2 EC3, Faella らによる方法

EC3^{2),3)}の方法では,接合部を15個の構成要素に分類 し,それらの構成要素の最小耐力を基に降伏耐力 $M_{j,Rd}$ を評価している.また,初期剛性 K_{ϕ} に関しては,接合 部を11要素のバネモデルに置き換え,それらの剛性か ら換算剛性を算出し評価している.これらの手法では, 曲げモーメントMと相対回転角 θ_r の関係を次式によっ て定義している.

$$M = K_{\phi} \cdot \theta_r \qquad M < \frac{2}{3} M_{j.Rd} \qquad (2a)$$
$$M = \frac{K_{\phi} \cdot \theta_r}{\left(1.5 \cdot \frac{M}{M_{i.Rd}}\right)^{\xi}} \qquad \frac{2}{3} M_{j.Rd} < M \qquad (2b)$$

ここで、 ξ は接合部形式に依存する係数であり、トップ &シートアングル接合の場合は $\xi = 3.1$ である.なお、 上式はひずみ硬化の影響を考慮したものであり、その概 形は図1(b)の実線となる.ひずみ硬化を考慮しない場 合には、(b)図における破線で示され、降伏耐力 $M_{j,Rd}$ を上限とするトリリニア型に定義されている.本論文 では、ひずみ硬化を考慮した場合について検討する.

Faella らの方法⁴⁾では、基本的に EC3 の方法に準拠しているものの、降伏耐力 $M_{j.Rd.F}$ 算定時には終局時のトップアングルの塑性ヒンジ位置を、初期剛性 $K_{\phi,F}$ 算出時には、アングル材の曲げ剛性やボルトの初期張力などを考慮し、若干修正している.

2.3 JISF による方法

JISF では, 図1 (c) に示すように $M - \theta_r$ 曲線を多直 線近似で定義し,相対回転角 $\theta_{req} = 40$ mrad の曲げモー メントを曲げ耐力 M_{ju} として規定している⁵⁾.曲げ耐力 M_{ju} は,アングル材の終局時における崩壊機構を3種類 想定し,それらの最小耐力を基に評価している.なお, $M - \theta_r$ 曲線の折れ点は,接合部データベースに格納さ れている実験データを基に,統計的に決定されており, 初期剛性 R_{jisf} は, 0.165 M_{ju} で与えられる.

3. 実験試験体

図2には、本論文で妥当性検討に用いた試験体の形状 寸法を示している、試験体は、梁材(H400×200×8×13)、

キーワード:半剛結接合,初期剛性,曲げ耐力,モーメント−相対回転角関係 連絡先:〒050-8585 室蘭工業大学大学院 工学研究科 くらし環境系領域 TEL/FAX:0143-46-5228

試験体名	初期剛性 (kN-m/rad.)					曲げ耐力 ^{#2} (kN-m)				
	実験結果#1	Kishi ら	EC3	Faella ら	JISF	実験結果	Kishi ら	EC3	Faella ら	JISF
	R_{ke}	R_{ki}	K_{ϕ}	$K_{\phi.F}$	R _{jisf}	M _{40.e}	$M_{k.40}$	$M_{j.40}$	$M_{j.40.F}$	M _{ju}
G60	100,410	106,702	51,326	98,822	26,478	160.3	161.7	100.0	173.1	160.5
G105	25,012	10,568	10,811	18,077	13,928	81.6	60.1	45.9	76.4	84.4
G150	19,562	2,869	3,599	6,701	9,869	52.0	34.2	28.1	43.8	59.8
0150	17,502	2,007		0,701	,,007		J. J	20.1	10.0	57.0

表1 既往の評価手法による初期剛性と実験結果の比較

#1 θ_r = 0.1 mrad 時の割線剛性により評価, 単調および繰り返し実験結果の平均値, #2 θ_r = 40 mrad 時の曲げモーメント値

図3 各手法による $M - \theta_r$ 曲線と実験結果の比較

高力ボルト(F10T, M20)およびアングル材厚(t = 15 mm) および柱側アングル材長($l_t = 200 \text{ mm}$)を固定し,柱側 ゲージ長(g_t)を変化させた全3種類である⁶.

4. 各手法による接合部剛性評価の妥当性検討

表1には、各部材の材料特性値(実験値)を用いて、各評価法によって算出された接合部初期剛性および曲げ耐力を実験結果と比較する形で一覧にして示している. なお、いずれの手法においても、曲げ耐力は JISF 規準 に準拠して $\theta_r = 40$ mrad における値とした.

図3には、各評価法から計算される $M - \theta_r$ 曲線を、 ゲージ長 g_t ごとに実験結果と比較して示している.

(a) 図より, $g_t = 60 \text{ mm}$ の場合に着目すると,JISF(□ 印)の場合には、初期剛性が実験結果よりも若干小さく、 $\theta_r \leq 8 \text{ mrad}$ の領域において、実験結果を過小評価してい るものの、それ以降の領域においてはほぼ適切に $M - \theta_r$ 特性を評価していることが分かる.Kishi らの手法の場 合には、 $\theta \leq 2 \text{ mrad}$ 程度まではほぼ適切な評価を与えて いるものの、それ以降の領域($\theta_r = 2 \sim 40 \text{ mrad}$)では、実験 結果よりも若干大きく示されている.また、Faella の手 法の場合には、降伏耐力に相当する $M_{j,Rd,F}$ ($\theta_r = 8 \text{ mrad}$) まではほぼ適切に $M - \theta_r$ 特性を評価しているものの、 $\theta_r \geq 8 \text{ mrad}$ の領域においては、実験結果よりも大きく 評価している.EC3の場合には、全評価方法の中で最も $M - \theta_r$ を小さく評価しており、設計的にはかなり安全 側と言える.

(b) 図の $g_t = 105 \text{ mm}$ の場合について見ると、 $g_t = 60 \text{ mm}$ の場合と同様に、JISF の手法では実験結果をほぼ適切に評価している.一方,他の3手法は、いずれも実験

結果よりも小さく,設計的には安全側の評価となって いる.また,(c)図の $g_t = 150 \text{ mm}$ の場合では,JISFの 手法で $\theta \ge 6 \text{ mrad}$ より若干過大評価を与えている.一 方,他の手法は $g_t = 105 \text{ mm}$ の場合と同様に実験結果よ りも小さな値となっていることが分かる.

以上より,JISFに規定されている評価法は,gt にかかわらず概ね実験結果を適切に評価できることが明らかになった.

5. **まとめ**

- (1) 日本鉄鋼連盟(JISF)が規定している接合部設計法
 は、初期剛性を若干小さめに見積もるものの、曲
 げ耐力はほぼ適切な値を示し、非線形な M θ_r
 特性もほぼ適切に折れ線近似が可能である.
- (2) Kishi ら, Faella らの手法の場合には、ゲージ長が 短い場合には曲げ耐力および初期剛性を適切に 評価できるものの、ゲージ長が長い場合には過小 評価傾向を示す。
- (3) EC3 による設計法の場合には、ゲージ長にかかわ らず実験結果よりも小さく、設計的には安全側評 価となる.

参考文献

- Kishi, N. and Chen, W.F. : Moment-rotation relations of semi-rigid connections with angles, *J. Struct. Div.*, ASCE, 116(7), 1813-1834, 1990.
- CEN, Eurocode 3: Design of steel structures, Part 1.8: Design of Joints, prEN 1993-1-8, 2003.
- CEN, Eurocode 3: Annex J, Design of Steel Structures Joints in Building Frames, prEN 1993-1-1:1992/A2, 1998.
- Faella, C., Piluso, V., and Rizzano G.: Structural Steel Semirigid Connections: Theory, Design and Software, CRC Press, 2000.
 (社)日本鉄鋼連盟:高力ボルト接合による靱性型鉄骨架構の構
- (1)「日本駅調達監・同方ホルド接合による敏任室駅育業構め構 造設計マニュアル,半剛接鉄骨架構の実用化検討委員会,2003.
 6) 佐藤陽介,小室雅人,岸 徳光:トップ&シートアングル接合
- 6) 佐藤陽介,小室雅人,岸 徳光:トップ&シートアングル接合の接合部剛性特性に関する実験的検討,鋼構造年次論文報告集, 15,121-128,2007.