リニアックトンネルへの地震動の影響 ~その1 地震観測~

原子力研究開発機構	正会員	〇市村	隆人
原子力研究開発機構	北見 俊善	幸 堀口	隆
日建設計シビル	正会員	川満	逸雄

原子核素粒子実験施設

トリノ実験が

はじめに

J-PARC は日本原子力研究開発機構と高エネルギー加速器 研究機構との共同プロジェクトとして、茨城県東海村に平 成 13~20 年度にかけて第 I 期施設を建設した (図 1). J-PARCの中で、線形加速器が設置されるリニアックトンネ ルは長さ330mの開削トンネルである.このトンネルに設置 した地震観測装置の観測の概要および観測結果について報 告する.

1. リニアックトンネルの構造

リニアックトンネルは W7.1mxH5.5mxL330mの継目の無 い直線状の開削トンネルで,加速器機器が設置される加速 器トンネル,ユーティリティ用の中間トンネルの2段構造 となっている(図 2)なお, 壁厚は遮蔽のため 1.1~1.9m である.

2. 地震観測装置の概要

リニアックトンネル軸直角方向の挙動が加速器運転に影 響を与える恐れがあることから、トンネル5断面上の床 版・側壁内に鉄筋計を配置し, 地震計は基盤(泥岩)1箇所, 地表面2箇所,トンネル南北両端に設置し,2003年より観 測を開始した. (図3に観測機器の配置図を示す.)

3. 観測結果

観測された地震記録の中から特徴的な地震として表1に示す3地震を選定し、リニアックトンネル躯体への影響 の視点で整理した. (図4に各地震の震央位置を示す.)

連絡先 〒319-1195 茨城県那珂郡東海村白方白根2-4 日本原子力研究開発機構 TEL029-282-5890

リニアック / シンクロトロン (周長 350m) 50GeV シンクロトロ (周長1600m) (330m) 図 1 J-PARC 鳥瞰図 屋外ヤート

物質·生命科学実験施設

3NBT

核変換実験施設 工期施設

図2 トンネル断面図

なお,リニアックトンネルは 南北方向に設置されており, トンネルに対し,①は直角方 向,②は軸方向,③は直下方 向にあたる.

観測例として、トネンル中央 部付近の断面3においてトン

ネル側壁に設置した軸方向鉄筋の最大加速度発生時付近の鉄筋 応力の時刻歴を図5左側グラフ(1)に示す.同図右側グラフ(2) には、(1)グラフの左右壁の記録波より軸方向(N)成分(L+R)/2 とモーメント(M)差分(L-R)/2に変換した時刻歴である.表2 に、この時刻歴の卓越周期分析結果を示す.

図5①-(1), ②-(1)の軸方向鉄筋応力は同じ傾向で,左右壁 の指示値が同じ応力時刻歴を示している.図5①-(2), ②-(2) のN成分およびM成分の時刻歴を見ると,これらは,X軸に対 して相似形の傾向を示し,表2に示す卓越周期も同じである. これは,軸力と曲げが同じ波長の地震動で生じていることを示 している.

一方,図5③-(1),(2)を見ると①,②地震に比べ短周期かつ 時間軸に対して相似形が崩れていることから,地震動の短周期 成分によって軸変形と曲げ変形にずれる部分が生じていること を示している.

基盤での観測地震動の卓越周期を調べる と、地震①及び②が2~5秒であり、地震 ③が0.2秒であった.トンネル周辺の地盤 の平均せん断波速度は約 300m/s であるの で、これより地震①及び②は波長が 600~ 1500m となり、リニアックトンネル (L=330m)より長い波長であるためこのよう な傾向になったと考えられる.

4. 結論

地震観測結果より,遠方からの地震はリ ニアックトンネルよりも長い波長であるこ とから、リニアックトンネルは地盤と一体 的に挙動し,躯体の軸力及び曲げ成分が同 時に発生しているが,直下地震では,短周 期かつ軸力及び曲げ成分が独立して発生し ていることがわかる. 表1 観測最大加速度(Gal)

			①2005/10/19(茨城県沖)			②2008/06/14(岩手·宮城)			③2008/08/22(茨城県北部)		
			軸	直角	上下	軸	直角	上下	軸	直角	上下
基		騔	69.1	115.5	36.5	11.1	9.4	6.2	79.7	91.5	32.3
地	表	쓵	213.5	282.6	133.2	20.4	18.5	10.3	326.9	243.4	152.9
地	表	啩	120.5	113.8	55.6	23.4	24.1	9.5	185.7	108.4	87.3
躯	体	놙	49.6	101.8	73.0	10.4	10.1	6.7	51.5	65.0	52.1
躯	体	南	46.7	56.0	40.6	7.4	12.3	8.2	63.7	39.1	32.2
計測震度 4.4 (地表面北)		2.9 (地表面北)		4.6 (地表面北)							

表2 各成分の直越周期分析結果 (sec)

	1) 2008/5/8		2 2008/6/14		3 2008/8/22			
	N成分	M成分	N成分	M成分	N成分	M成分		
1次ピーク	1.75	1.75	4.08	4.08	1.41	0.40		
2次ピーク	2.67	2.67	2.40	2.40	1.03	2.97		
3次ピーク	0.61	0.44	3.30	3.30	2.97	1.41		