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1. Introduction 

  Maintaining civil structures has become extremely 

important. To assess structures’ condition, the authors had 

previously proposed a structural parameter identification 

method for discrete damped structures regardless of baseline 

vibration measurement(1). Modal identification of the system 

is performed under various mass perturbation conditions, 

which are created by adding known masses(2). Structural 

parameters consistent with the identified modal parameters 

are determined. In this study, at first the extension of the 

proposed method to a beam structure is numerically 

validated. Finally, the proposed method is applied to 

structural identification of a real-life bridge. 

2. Algorithm 

The governing differential equation of a linear time 

invariant dynamic system is as follows 

)()()()( tttt fKxxCxM =++ &&&                     (1) 

where M, C, K are mass, damping, stiffness matrices, and 

x(t), f(t) are displacement and external force vectors 

respectively. After the state-space transformation, the 

system’s eigenvalue problem becomes 

 Λ−= AXBX                                   (2) 

where 
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and Λ  , X  are the eigenvalue and eigenvector matrices 

respectively. When masses are added to the structure, its 

mass matrix is changed by Ma, and Eq. (2) becomes 
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where 
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  Pre-multiplying both sides of Eq. (3) with TX  and 

rearranging it yields 
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Matching the (i,j)th element of both sides of Eq. (4) yields 
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Eq. (5) can be rewritten as an equation of elemental 

structural parameters m, k, and c as follows. 
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  As Ma is known, and natural frequencies, mode shapes are 

obtainable from modal identification, Eq. (6) for various (i,j) 

is solved for structural parameters. Ma can also be changed 

in order to obtain various mass perturbation conditions. 

3. Numerical validation on a beam structure 

  The proposed method has been proved capable of 

structural identification of a discrete spring-mass system(1). 

For this method to be able to apply to a beam structure, such 

as the one in Fig. 1, the beam has to be discretized into 

discrete elements. Subsequently its flexural stiffness EI can 

be identified using equation Eq. (6). When translational and 

rotational degrees-of-freedom (DOFs) of all nodes can be 

obtained, each elemental EI is accurately identified as in Fig. 

2, where solid bars and hollow bars represent identified and 

exact values respectively.  
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Fig. 1: A reference beam model      Fig. 2: Stiffness i.d. result 

  When rotational DOFs are unobservable, which is usual in 

practice, such as the one in Fig. 3, nodal rotational DOFs are 

interpolated from densely measured translational DOFs at 

dotted locations. The identified results of elemental EI as in 

Fig. 4 show good agreement with the exact values. Thus, the 

method shows a possibility of application to real structures. 
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Fig. 3: Beam model w/o rotation data   Fig. 4: Stiffness i.d. result 

4. Application to a real-life bridge 

In order to experimentally validate the proposed method 

to a real-life structure, a test was conducted with a bridge as 

described in Fig. 5. The bridge consists of 4 steel girders and 

a concrete slab. The girders are instrumented with 12 

accelerometers, marked by solid squares in Fig. 5. The 

bridge is mass-perturbed 4 times by placing steel blocks 

whose total weight is up to 15 tons, or about 12% of the 

bridge’s weight, each time at a different location from P1 to 

P4 as marked by stars in Fig. 5. In each condition, the bridge 

is excited by dropping a sandbag 3 times in a row onto its 

slab from the air at 5 different locations marked by circles. 
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Fig. 5: Bridge schematics and sensors layout 

Fig. 6 shows natural frequencies of the first bending mode of 

all trials. Although there is a small scattering of frequency 

due to slightly weak repeatability and impact location 

change, changes of the first natural frequency due to added 

masses show clear trends, ranging from around 3% when the 

mass is added at P3, P4, to as high as 7% at P1, P2. 
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Fig. 6: 1st bending frequencies in tests and model computation 

In order to confirm this trend, the bridge is modeled by 

Abaqus® as shown in Fig. 7, using material inputs from 

preliminary tests and its geometry from design drawing. The 

boundary conditions are fixed-roller for the girders and 

partially fixed-fixed for the concrete slab due to its 

continuity at both ends. First bending modes of the modeled 

bridge in all conditions are computed. The first mode shape 

in one condition is shown in Fig. 8 as an example.  

  
Fig. 7: Bridge analysis model  Fig. 8: Computed 1st bending mode 

All the natural frequencies are plotted as solid squares in Fig. 

6, and they show good agreement with the corresponding 

measurement results. Significant changes of the first 

frequency of a real-life bridge due to added mass have been 

confirmed by both tests and model simulation. However, 

application of the proposed method to identify structural 

parameters of this bridge has been unsuccessful due to the 

scarcity of modal properties obtained from data 

measurement, in which high modes could not be properly 

identified. This difficulty indicates that the idea of adding 

known mass to obtain more information on a structure needs 

to be utilized in a way so that a small number of modal 

properties are sufficient for identification. For this purpose, 

model updating method combined with mass perturbation is 

expected to be a good solution. This will be the direction of 

the authors’ future research in order to tackle the difficulties 

of structural identification of real-life structures. 

5. Conclusions 

  Extension of the previous research to structural 

identification of a beam structure has been numerically 

validated. Although its direct application to a real-life bridge 

was unsuccessful, the test gave insight into how a real-life 

bridge’s frequency changes due to added mass. Efforts will 

be made to utilize added mass in model updating in 

expectation of enhancing structural identification capability. 
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