同時多点観測データに基づく免震橋の地震時挙動に関する一検討

(㈱大林組 東京本社生産技術本部 橋梁技術部 フェロー会員 伊奈 義直前 首都大学東京 都市環境学部 都市基盤環境コース 正会員 中谷 泰子 首都大学東京 大学院 都市環境科学研究科 正会員 長嶋 文雄

1. はじめに

免震支承を用いた橋梁は、長周期化と減衰性能の付加 により、地震時における上部工の慣性力の低減を目的と して 1995 年兵庫県南部地震以後、本格的に普及・定着し てきている.しかし、地震時における実際の挙動に関す る検討や免震性能確認の例は少ない.福島県内の某火力 発電内にある免震橋梁を対象として、その竣工年である 1991 年7月から 2007 年 11 月までの約 16 年間にわたり 地震観測を継続した.その概要は文献 1) で既にまとめて いるが、その後明らかになった事柄について報告する.

2. 対象とした橋梁と地震観測

同時多点地震観測を実施した橋梁は,橋長 76.35m,幅 員 11.2mの PC 2 径間連結連続桁橋であり,また斜橋であ る(図-1).石炭輸送用のベルトコンベア橋が併設され, 下部工は一体化されているが,上部工反力の比は 2.2:1.0 で地震力による影響は少ないため,道路橋の橋軸方向の みに高減衰ゴム支承を用いた免震設計とした²⁾.観測点 は図-1 に示すように 12 ヶ所に設けた.図中の記号は, それぞれ LE:左岸側,AB:橋台,RI:右岸側,GI:橋桁, PIT:橋脚天端,PIF:橋脚基礎,PIP:杭先端,A:加速度, D:相対変位計を示す.また,X方向を橋軸方向(免震), Y方向を橋軸直角方向(非免震:高減衰ゴムを介してス トッパーで拘束している),回転方向は時計回りを正とし た.本研究では,支承ひずみが最も大きい 2005 年 8 月の 宮城県沖地震を対象に検討を行う.

3. 記録波形と周波数特性

主な観測点における加速度記録波形を図-2 に示す.また,最大加速度値と加速度倍率(桁/橋台,桁/橋脚天端または桁/杭先端)を表-1 に示す.また,桁(橋脚上)の加速度フーリエスペクトルを図-3 に示す.橋台に対する桁(橋脚上)の倍率は,免震(X)方向において1.0~1.4 倍であるが,非免震(Y)方向は1.8~1.9 倍となっており,免震の効果が現われている.杭先端に対する桁の

キーワード:免震橋,地震観測,周波数特性,軌跡図

倍率は、X 方向:1.7~2.0 倍に対して Y 方向:2.5~3.3 倍であった. 杭先端の X、Y 方向加速度が同程度である のに対して、免震(X) 方向は非免震(Y) 方向よりも 3 ~4 割程度加速度値が低下している. 桁(X 方向)は、 1.2 Hz (0.83 sec)付近で大きく卓越するが、桁(Y 方向) は 1.2~3.0Hz に分散したピークを持ち、X 方向のような 特定の振動数が卓越しない. これは Y 方向がストッパー で拘束されているためである. 桁(X 方向)の 3Hz 以上 は、免震支承により高い振動数が除去されている.

4. 免震橋の地震時挙動

加速度波形を2回積分した変位波形より,杭先端,橋 台(橋脚),桁の軌跡を図-4に示す.ただし,(b)と(c) は橋台、桁の波形を杭先端の波形で減じたもの,(d)は 桁の波形から橋台(橋脚)の波形を減じたものである. 杭先端は,X方向よりY方向の方が2倍程度大きいが, 橋台(橋脚)は杭先端のY方向が大きいこと,ならびに 斜橋の影響を受けていることから,やや斜め方向に大き くなる.桁は図-4(c)において,全体にY方向よりX 方向の方が大きいが,図-4(d)では,明らかにX方向 が大きく,また勾配の方向が相違する.

図-5 に示すように、Y 方向の相対変位と支間長から橋桁の回転変位を求めた. これより反時計回りに最大 3.5×10⁴rad 程度運動をしており(図-6),斜橋の回転運動特性と見られる挙動を得ることができた(図-7).

5. おわりに

震度法レベルではあるが、宮城県沖地震の観測波(最 大入力加速度 132.2gal)から、免震橋の回転運動を含む 地震時挙動および周波数特性を明らかにした。

【参考文献】 1) 伊奈義直,菊地敏男: 免震支承を用いPC 道路橋の地震時挙動,土木学会論文集 A Vol64.No4.pp778-788,2008.11 2) 安斎清,伊奈義直,榊原直樹: PC 道路橋の免震設計と施工について,土木学会第47回年次学術講演会,1992,9

連絡先(東京都港区港南 2-15-2 品川インターシティ B棟 TEL03-5769-1306 FAX03-5769-1979)

土木学会第64回年次学術講演会(平成21年9月)

図-7 斜橋の回転特性

図-6 橋桁の回転変位波形

10

(橋台)

時間(sec)

(Pag

回転角(2

0

-0.0004

桁上∶a

Chiaic