超高強度繊維補強コンクリートパネルとRC床版の合成構造の耐荷力に関する研究

日本大学大学院	学生員	園木 聡	日本大学	正会員	阿部 忠
日本大学	正会員	木田哲量	太平洋セメント(株)	正会員	田中敏嗣

1.はじめに

鋼道路橋 RC 床版は,施工の合理化・省力化,コスト 縮減が重要課題として技術開発が行われている。その1 つに,型枠施工の省力化を目的とした超高強度繊維補強 コンクリート(UFC)で製作したパネルと RC 床版の引張鉄 筋かぶり内に UFC 型枠を埋設した合成構造(以下,UFC パネル RC 床版とする)が提案されている。

そこで本研究は, RC 床版供試体と RC 床版と同寸法と したかぶり内に UFC パネルを用いた供試体および軽量化 を目的として床版厚を 2cm 減少させた供試体の 2 タイプ の UFC パネル RC 床版供試体を用いて静荷重実験を行い, 最大耐荷力,荷重とひずみの関係および破壊状況から実 用性を評価する。

2. 使用材料および寸法

RC 床版 供試体のコンクリートには,普通ポルトランドセメントと最大寸法 20mm の粗骨材を使用した。
また,鉄筋には SD295A, D10 を使用した。

(2) UFC パネルの使用材料 UFC パネルの使用材料 は,水,ポリカルボン酸系の高性能減水剤,プレミック ス材料および鋼繊維とした。鋼繊維は,直径 0.2mm,長 さ15mmを体積比で 2.0%使用した。プレミックス材料は, セメント,シリカフューム,硅石粉末などが最密充填さ れるように配合されており,粗骨材は使用せずに最大粒 径 2mm の硅砂を混合した。混和剤使用量は,目標フロー 値を 240mm として決定した。

2.2 UFCパネルの付着面および寸法 UFCパネルとRC 床版との合成効果を高めるためには,UFCパネルの合成 面の構造が重要となる。そこで,本供試体の合成面はUFC パネル側に凹部を一様に設けた構造を採用した(以下,P 型とする),UFCパネルの寸法は,RC床版の引張鉄筋かぶ り内に埋設することから,幅1470mm,板厚20mmとし,付 着面厚は5mmとした。

2.3 供試体寸法および鉄筋配置 本供試体は,道路橋 RC 床版の施工の合理化を目的としたことから,現行示方書に基づいて,RC 床版の設計支間と大型車両の1日1方向あたりの計画交通量が2000台以上を想定して床版厚, 鉄筋量を算出し,その1/2モデルとした。ここで,本実験供試体の寸法および鉄筋配置を図-2に示す。供試体は, 通常の型枠で製作した床版厚130mmのRC 床版(図-2 (1))と,軽量化を目的とした床版厚110mmの2タイプのUFCパネルRC 床版(図-2(2))を製作した。RC 床版の供試体名称をRC13-Sとした。UFC パネルRC 床版供 試体の床版厚 130mmの供試体名称を U.RC13-S とし,床 版厚 110mmの供試体名称を U.RC11-S とした。 (3) UFCパネルRC床版供試体の作製

UFC パネルの作製は図 - 3に示すように, 凸型の型枠を 用いて製作し, 20 で 24 時間養生(1 次養生), その後 48 時間 90 の蒸気養生(2 次養生)を行った。次に, UFC パネル RC 床版の作製は,予め製作した UFC パネル (1470×1470×20mm)を床版底面に設置し,その上に直接に鉄 筋を配置し,コンクリートを打設して一体構造とした。 3.実験方法

静荷重実験は,曲げ応力が最大となる床版中央に車輪 を停止した状態の実験である.載荷方法は荷重制御によ り 10kN ずつ荷重を増加し,鉄筋が降伏した後は 5kN ず つ破壊するまで荷重を増加させた。

4.実験結果および考察

4.1 実験耐荷力 静荷重実験における最大耐荷力の平 均は表 - 3より RC 床版供試体 RC13-S が 237.7kN であり, UFC パネル RC 床版供試体 U.RC13-S が 294.7kN であっ た。また,床版厚 110mm の供試体 U.RC11-S は 245.0kN であった。静荷重実験における RC 床版供試体と UFC パ ネル RC 床版供試体を比較すると,UFC パネル RC 床版 供試体 U.RC13-S が 1.24 倍の耐荷力となり,軽量化を目 的とした供試体 U.RC11-S が 1.03 倍の耐荷力となった。 したがって,UFC パネル RC 床版供試体は UFC パネルと RC 床版部のコンクリートとの合成作用により耐荷力が向 上する結果となった。

4.2 破壊状況 RC 床版供試体 RC13-S1 のひび割れ状況は,(図-3(1))に示すように,主鉄筋および配力筋の配置位置に発生している。車輪の接地面(250mm×40mm)から床版底面方向に約 45 度の拡がりで荷重が分布した底

キーワード: RC 床版, UFC パネル,静荷重実験,破壊 連絡先 〒 275-8575 習志野市泉町 1-2-1 日本大学生産工学部土木工学科 TEL 047-474-2459

表-3 実験耐荷力および破壊モード

供試体	最大耐荷 力(P _{max})	平均耐荷 力 (P _{cp})	耐荷力比	破壊モード
	(kN)	(kN)	U.RC/RC	
RC13-S1	235.2	7277		押抜きせん断破壊
RC13-S2	240.2	237.7	_	押抜きせん断破壊
U.RC13-S1	299.6	204.7	1.26	押抜きせん断破壊
U.RC13-S2	289.7	294.7	1.22	押抜きせん断破壊
U.RC11-S1	245.0	245.0	1.03	押抜きせん断破壊
U.RC11-S2	245.0	245.0	1.03	押抜きせん断破壊

された。

図 - 5 荷重とひずみの関係

面コンクリートがはく離している。これは引張鉄筋のダ ウエル効果によるものである。破壊モードは荷重増加中 に押抜きせん断破壊となった。

UFC パネル RC 床版供試体 U.RC13-S1 および U.RC11-S1 の破壊状況は(図 - 3(2))に示すように,輪荷 重の接地面から約45度底面の内側は,微細なひび割れが 軸方向および軸直角方向に発生している。また,45 度底 面の外側は降伏線方向にひび割れが分散して発生してい る。破壊は RC 床版が押抜きせん断破壊となり , RC 床版 とUFC の合成面ははく離していている。

4.3 鉄筋および UFC パネルのひずみ

(1)鉄筋のひずみ RC 床版供試体の軸直角方向の荷重 と鉄筋ひずみの関係 (図-5(1))は,両供試体ともに荷 重 60kN 付近まで線形的に増加した。その後の荷重増 加でひずみは増加し,荷重 205kN 付近までは線形的に 増加した。その後の荷重増加からひずみの増加も著し くなり破壊に至っている。軸方向の荷重と鉄筋ひずみ の関係 (図 - 5(2)), は,荷重 60kN 付近まで線形的に増 加し、その後の荷重増加ではややひずみが増加し、荷重 は 200kN 付近まで線形的に増加した。その後の荷重増加 では急激にひずみが増加している。

UFC パネル RC 床版の軸直角方向の荷重とひずみの関 係(図-5(1))は,供試体 U.RC13-S の場合は終局時まで ほぼ線形的に増加した。次に,供試体 U.RC11-S のひずみ は荷重 200kN 付近までは線形的に増加し,その後の荷重 増加からひずみの増加が大きくなった。次に,軸方向の 荷重とひずみの関係 (図-5(2))は,軸直角方向とほぼ 同様な増加傾向を示した。供試体 U.RC11-S のひずみは, 供試体 U.RC13 に比して 20mm 薄いために荷重 140kN 付 近からひずみの増加が大きくなっている。以上より,RC 床版供試体に比して UFC パネル RC 床版供試体は,軸直 角方向および軸方向ともに引張鉄筋ひずみが大幅に抑制

(2) 軸方向

U.RC13-S1

U.RC11-S

UFC パネルの支間中央底面 (2) UFC パネルのひずみ における荷重とひずみの関係は軸直角方向の UFC パネル のひずみは, U.RC13, U.RC11 ともに. 荷重 100kN まで は線形的に増加し、その後の荷重増加ではひずみの増加 はやや大きくなるものの,終局時のひずみは供試体 U.RC13 が 3600×10⁶ 程度,供試体 U.RC11 が 2580×10⁶ 程 度であった。次に、軸方向の荷重と UFC ひずみの関係は、 供試体 U.RC13 は荷重 200kN 付近まで線形的に増加し, その後の荷重増加からひずみの増加が著しくなった。供試体 U.RC11 は,供試体U.RC13 と同様な増加傾向を示している。 5.まとめ

UFC パネル RC 床版供試体は UFC パネルと RC 床版部 のコンクリートとの合成作用により耐荷力が向上する結 果となった。また,床版厚 130mm の RC 床版と床版厚 110mm の UFC パネル RC 床版は, ほぼ同程度の耐荷力で あり,床版厚を 20mm 減少できることから RC 床版に比 して15%の軽量化が図られた。

UFC パネル RC 床版のひび割れ状況は , 微細なひび 割れが軸方向および軸直角方向に発生し,荷重の分散効 果が得られている。破壊はRC 床版および UFC パネルRC 床版ともに押抜きせん断破壊となった。

RC 床版供試体に比して UFC パネル RC 床版供試体 は,軸直角方向および軸方向ともに引張鉄筋ひずみが大 幅に抑制された。UFC のひずみは鉄筋のひずみと同様な 増加傾向を示している。

参考文献

- 1) 土木研究センター: 土木系材料技術・技術審査証明報告 書「FRP と高強度モルタルの複合部材による高耐久性 埋設型枠材「H·R フォーム」」, 1995.
- 2)土木学会, コンクリートライブラリー 113「超高強度繊 維補強コンクリートの設計・施工指針(案)」,2004.