
車両との連成を考慮した斜橋の交通振動応答予測 

Prediction of skew bridge vibration incorporating interaction with road traffic 
東京大学 フェロー会員   ○ 藤野陽三 

東京大学 正会員 蘇 迪 

東京大学   Jean-Charles Wyss 

 

1. Introduction  

Although skew bridges are widely used, they are usually designed without particular attention to their skewness. Their 

structural properties are, however, different from those of non-skewed bridges. Very few researchers have considered the 

dynamic response of skew bridges under moving-vehicle loads, and their surveys are mainly based on field 

measurements 
[1]

. It is essential to predict their structural responses to in-service loads. In this study, the vehicle-bridge 

decoupled equations of motion are implemented with the commercial software ABAQUS and MATLAB. This analytical 

procedure is applied to a full-scale steel I-girder skew bridge that has been monitored. The validated model is further 

used to investigate the particular behaviors caused by the skewness and to identify critical structural members. 

2. Vehicle-bridge system modeling 

A versatile numerical procedure is developed in order to simulate the dynamic interaction between the bridge and the 

vehicle, incorporating the effect of road surface roughness. The vehicle is represented as three rigid bodies connected by 

linear springs and dashpots, as illustrated in Fig. 1. The model has a total of eight degrees of freedom (DOF). The 

equations of motion for the vehicle are derived from Lagrange’s equation and can be written in a matrix form as 

           M C K { }v v v g cu Fu u F      (1) 

where {u} is the vector of the vehicle’s DOF, [Mv], [Cv] and [Kv] are the vehicle 

structural matrices, {Fg} is the gravity force vector and {Fc} is the eight-dimensional 

vector of the forces and moments exerted by the bridge on the vehicle. Each 

component of vector of the wheel displacements {vc} is equal to the sum of the 

roughness and the bridge displacement at the corresponding contact point. The 

roughness of the roadway is treated as a stationary normal random process with 

zero-mean in this study. The matrix equation of the bridge is given by 

          M C K [Γ]b b b vbv Fv v     (2) 

in which [Mb], [Cb] and [Kb] are the bridge structural matrices assembled by any FEM 

software, {v} is the bridge DOF vector and {Fvb} is the six-dimensional vector of the 

vertical forces exerted by the wheels on the bridge at the contact points [Fig. 1(c)]. In 

practice, the n-dimensional force {[Γ] {Fvb}} exerted on the bridge is implemented in 

the FE software by means of a subroutine. The vehicle-bridge system is coupled 

because of the existence of the interaction forces {Fc} and {Fvb}. 

 

The coupled equations of motion (1) and (2) of the vehicle-bridge system are 

decoupled and solved step by step using Newmark’s numerical integration scheme. 

Initially, the bridge remains stationary while the vehicle’s displacements and the wheel 

forces acting on the bridge are caused only by the static weight of the vehicle. If the vehicle’s displacements {u}t 

velocities  
t

u  and accelerations  
t

u ; the bridge displacements and velocities, and the vector of forces exerted by the 

vehicle on the bridge {Fvb}t are known at any time t, it is possible to derive these quantities at time t + t by using this 

algorithm
[2]

. The bridge’s displacements at time t + t are obtained with ABAQUS by applying the force {Fvb}t at the     
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(a) Elevation view 

 
(b) Side view, front axle 

 
(c) Contact condition 
Fig. 1 Vehicle model. 
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contact points during the step time t. Next, the wheel-displacement vector {vc}t+t is derived from the bridge’s 

displacements at time t + t and the roughness data. Finally, {u}t+t and {fvb}t+t are computed with MATLAB. 

3. Modeling adjustment and verification 

The numerical procedure described above is applied to a full-scale 

skew bridge monitored by the Japanese Public Works Research 

Institute. It is a simply supported, single-span, 46°-skewed composite 

bridge. The 230 mm reinforced concrete slab is supported by four steel 

I-girders. The bridge is 32 m long and 9.95 m wide. All the bearings allow rotational displacements in three directions. In 

2003, the bridge was equipped with strain gauges, whose positions are indicated in Fig. 2. A FE model of the bridge was 

developed with the commercial software ABAQUS. By comparing the natural frequency results with the measurement, 

the case in which all the degrees of freedom are restricted is chosen as the boundary conditions in the analysis.  

The boundary conditions and road roughness were adjusted to fit the 

numerical model to the field-test results at a single channel. For instance, 

the responses at the midpoint of Girder 3, seen in Fig. 3, show that the 

simulations were in good agreement with the measurements. This 

comparison demonstrates that simulation can reasonably approximate the 

real state of the bridge. 

4. Analysis of the skew bridge 

 To indentify the effects caused solely by the skewness 

and distinguished from effects that also occur in regular 

bridges, a non-skewed reference model was prepared with 

the same structural design properties as the skew bridge. 

The distributions of negative longitudinal slab-bending 

moments were graphically investigated and are shown in 

Fig. 4. The moments concentrate in the numbered regions 

above the girders at the extremities of both structures. When 

the time histories are precisely output for the six regions of 

both bridges, the greatest response is observed in the obtuse 

corner of the skew bridge (Region 3). The result shows that in this critical area, 

the maximum negative moments are 22% higher than in the non-skewed bridge. 

Sensor points were defined in the girder part of the reference model at 

locations equivalent to those in the skew bridge. Minimally and moderately 

stressed components generally exhibit higher responses in the reference model, at 

the midpoints of the main girders, for instance (Fig. 5). 

5. Conclusion 

This study confirms that it is essential to consider a bridge’s dynamic responses in order to correctly assess its 

structural condition.  
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Fig. 2 Bridge structure and locations of strain gauges 
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Fig. 3 Comparison between simulation and measurement  

 
(a) Skew bridge 

 
(b) Non-skewed bridge 

Fig. 4 Comparison of the slab negative moments 
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Fig. 5  Comparison of the girder stresses 
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