車両走行加振による動的応答を用いた橋梁損傷推定の模型実験

神戸大学大学院	フェロー	川谷	充郎
神戸大学大学院	学生会員	藤本	達貴

神戸大学大学院 正会員 金 哲佑

Fig.1 Experimental girder .

(a) Damage section I

(b) Damage section II

uninge seenon i

Fig.2 Damage sections .

Table 1 Structural properties of model girder

	Intact		D1		D2	
	Frequency	Damping	Frequency	Damping	Frequency	Damping
	(Hz)	constant	(Hz)	constant	(Hz)	constant
1次	2.69	0.0337	2.59	0.0471	2.54	0.0245
2次	10.7		9.8		10.2	
3次	23.3		23.1		22.6	

Table 2 Scenarios of moving vehicle laboratory experiment

シナリオ(I:健全時, D1:Damage section I, D2:Damage section I+II)	車両種類	車両速度
I-1, D1-1, D2-1	V1(M=21.6kg,f=2.93Hz)	S1=0.93m/s
I-2, D1-2, D2-2	V1(M=21.6kgff=2.93Hz)	S2=1.63m/s
I-3, D1-3, D2-3	V2(M=21.6kg,f=3.76Hz)	S1=0.93m/s
I-4, D1-4, D2-4	V2(M=21.6kg,f=3.76Hz)	S2=1.63m/s
I-5, D1-5, D2-5	V3(M=25.8kg,f=3.03Hz)	S1=0.93m/s
I-6, D1-6, D2-6	V3(M=25.8kg,f=3.03Hz)	S2=1.63m/s

3. 損傷推定理論の妥当性検討 3.1 模型橋梁車両走行装置 走行実験で用いる模型橋梁車両走行装置を Fig.1 に示す.模型橋梁は支間長 5.4m の H 型の鋼桁である.車両はレールに沿って走行し,レールには路面凹凸を再現する.橋梁に与える損傷は, Damage section I として, Fig.2 (a)に示すように橋梁 L/4-L/2 間の左右のフランジ に等間隔に 3 箇所スリットによる損傷と,Damage section II として, Fig.2 (b)に示すように 3L/4 - L 間の左右フランジの下を最大で 20 mm 斜めに削り取る.損傷による曲げ剛性の変化は静的たわみから逆算して,Damage section I において約 11%,Damage section II において約 23%低下している.損傷シナリオとして,模型橋梁が Damage section I のみ持つ場合(D1),Damage section I と Damage section II ともに持つ場合(D2)の 2 シナリオとする. 自由振動実験により得られた橋梁の健全時と損傷シナリオ D1,損傷シナリオ D2 における固有振動数と減衰定数の 変化を Table 1 に示す.損傷によって 1 次固有振動数は低下し,減衰定数は損傷箇所や損傷度により変化すること が分かる.

キーワード:橋梁交通振動,損傷推定,走行模型実験. 連絡先 〒657-8501 神戸市灘区六甲台町1-1 神戸大学大学院工学研究科市民工学専攻 Phone:078-803-6383

1. <u>はじめに</u> 高度経済成長期に建設された多くの橋梁構造物 は耐用年数を迎える時期に来ており,劣化や老朽化が進行し ている.近年の社会基盤施設を巡る状況を見ると,施設の新 規整備に比べ,相対的には既存施設の維持管理や有効活用の 比重が高まってくる.既存施設の維持管理には構造物の劣化 に関する将来予測,補修の意思決定を行ううえで,現状の構 造物の健全度の評価が必要不可欠であり,適切なアセットマ ネジメントを行う上でも健全度評価は大変重要なテーマとな っている.特に我が国のように地震の頻発する国々では,地 震発生後,周辺地域の社会基盤施設の劣化はさらに急速に進 む可能性が高く,迅速な損傷推定手法の開発は重要な課題で ある.そこで,本研究では短支間道路橋を対象とし,時間領 域での走行車両による橋梁の動的応答を用いて,橋梁の損傷 度を推定する方法¹⁾の有効性を検討するため,模型橋梁を用

2. 損傷推定アルゴリズム 損傷により橋梁の剛性のみが変化すると仮定すると,橋梁および走行車両の動的応答を測ることにより,橋梁-車両連成系の運動方程式の橋梁剛性 K_{be}の変化から損傷を推定することができる.橋梁剛性の変化を推定する指標として,損傷前後の要素剛性比である要素剛性

指標 (ESI: Element Stiffness Index) (Eq.(1))を導入する.

 $x_e = (K_{be})_d / (K_{be})_i$

いる走行実験を行う.

ここで, (*K_{be}*)_{*i*} および(*K_{be}*)_{*d*} はそれぞれ *e* 要素の損傷前後の剛性を示す.すなわち,橋梁が健全な場合の要素剛性指標は常に 1.0 になり,損傷により 30%の剛性低下がある場合は健全時に対する相対値として 0.7 になる.

(1)

3.2 走行実験 走行シナリオとして Table 2 に示すように,振動 特性の異なる 3 種類の車両の速度を 0.93m/s と 1.63m/s の 2 種 としそれぞれ 6 シナリオで行う.観測点として,模型桁での L/4,L/2,3/4 Lの3点に加速度計,変位計をそれぞれ設置し, 車両の前後軸 2 点に加速度計を設置する.一例として,健全時 (I-3),損傷を 2 箇所与えた場合(D2-3) それぞれにおける橋梁・ 車両から得られた応答と,そのフーリエスペクトルを Fig.3 と Fig.4 に示す.

3.3 損傷推定結果 損傷評価に用いた橋梁モデルは観測点が 3 点であることを勘案し, Fig.5 に示すような 4 要素モデルを用 いて逆解析を行う.実験より得られた応答を用いた損傷シナ リオ D1, D2 における損傷評価結果を Fig.6, Fig.7 にそれぞれ 示す.損傷シナリオ D1 の結果を見ると,走行シナリオ D1-3 以外において,損傷を与えた要素 No.2 の ESI 値が最も低下 している.また,要素 No.2 における推定された ESI と剛性 低下値(11%)との誤差は全走行シナリオにおいて 6%以下とな ることから,本手法により損傷位置や損傷度の検出が可能で あると考える.また,要素 No.1と要素 No.3の ESI 値が低下 している原因として, Damage section I が隣接する要素にも影 響したものと考えられる.次に,損傷シナリオ D2 の結果を 見ると、全走行シナリオにおいて、損傷を与えた要素 No.2 と要素 No.4 の ESI が低下し,損傷位置の把握が可能である ことがわかる.また,それぞれの要素における ESI と剛性低 下値(No.2:11%, No.4:23%)との誤差は, 要素 No.2 において 9%, 要素 No.4 において 11%以下となり,損傷が2 箇所の場合も 本手法により損傷箇所や損傷度の検出が可能であると考える. すべての結果から,本手法により,車両種類や車両速度にか かわらず損傷位置の把握と損傷度の検出が可能であるといえ る.

4. まとめ 本研究では,損傷推定手法の妥当性検討を目的 22 として,模型橋梁車両走行装置を用いた走行実験データから の損傷度評価を行った.実験より得られた振動データを用い た損傷推定結果より,車両種類や車両速度にかかわらず,模 型橋梁の損傷箇所・損傷度の検出が可能であることがわかる. 参考文献 1) C.W. Kim and M. Kawatani: Pseudo-static approach

for damage identification of bridges based on coupling vibration with a moving vehicle, Structure and Infrastructure Engineering, Vol.4, No.5, pp.371-379, 2008.

 2) 金哲佑,川谷充郎:単一車両走行による橋梁振動データを 用いた橋梁の健全度評価,鋼構造論文集,第15巻,第58号, pp.37-46,2008.

Fig.3 Responses of experimental girder under scenario I-3.

Fig.4 Responses of experimental girder under scenario D2-3.

Fig.5 Bridge model for damage identification.

Fig.7 Identified damage location and severity of the bridge with damages at ELEM. No.2 and ELEM. No.4.