実事象を考慮した地震応答解析による耐震補強試設計

大日本コン	/サルタント(材	朱) 正会員	○安藤	滋芳
同	上	正会員	吉岡	勉
同	上	正会員	原田	政彦

<u>1. はじめに</u>

-049

橋梁の実際の地震時挙動と、耐震設計に用いられる解析モデルの挙動は必ずしも一致していないのが実状である。 著者らは、地震応答解析をより精度良く行うことを目的に、実際の強震記録データとの比較により地震応答解析上 のモデル化方法について検討してきた。その中で、地盤と構造物の動的相互作用や地盤の非線形特性、および鋼製 支承の摩擦や破壊を考慮することで、実測とよい一致が得られてきた^{1),2)}。本稿では、それら実際に起こりうる事象 を適切に反映させた地震応答解析により、既設橋梁のレベル2地震時の現況照査と耐震補強試設計を行い、これま での一般的な手法による結果との差異について報告する。 **表-1 解析ケースの概要**

<u>2. 対象橋梁と解析方法</u>

対象とした橋梁は、一般的な河川橋を想定した橋長 91.1m の鋼 3 径間連続 4 主鈑桁橋である。逆 T 式の橋台と小判型断面の RC 張出 し式橋脚は、それぞれ II 種地盤での鋼管杭によって支持されている。

支承条件は、橋軸方向に P2 橋脚のみで固定 された一点固定方式である。

解析ケースの一覧を表-1に、Case3での解 析モデルを図-1に示す。上部工は線形はり 要素、下部工はトリリニア型の M-φモデル とした。支承部は、固定・可動の拘束条件を 線形バネで与えたモデルと、可動支承の摩 擦・ストッパーへの衝突・損傷を考慮した履 歴特性を有する非線形バネモデルのケース とした。また、基礎~地盤系については、道 示に示される S-R バネモデルと、基礎周辺の 自由地盤を R-O モデルでモデル化し、相互作

30100		30100	30100				
上部工:線形はり3 M			Ē				
0000 0000	////////////////////////////////////	線形はり要素 0008 トリリニア) 8052 整:R-0モデル 0001	抗基礎:線形はり要 相互作 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·			
↓P / F3=支承の水平耐力			▲P ハ1リブ/2 引張側	スリスノ空 p 引張側			
10-5-50 ビルエロム 12-2 磁後後の春焼 11-開度力 KI KI 支東の 可能移動量	ry ry r	P _H	δ	P _{HU}			
(a) 可動支承モデル (b) 自由地	!盤R-0モデル	(c)相互作用バネ	(杭~地盤)(d)相互	〔作用バネ(底版~地盤)			
図_1 Case3 になける留板エデル図							

従来手法

道示標準波 Ⅱ-Ⅱ-1

S-Rモデル

無視

概要

入力地震波

基础~地般

支承の摩擦

基礎〜地盤の 動的相互作用を考慮

> P2地盤での 引戻し基盤波

骨組連成モデル

無視

支承の滑り摩擦, 衝突,損傷を考慮

P2地盤での 引戻し基盤波

骨組連成モデル

考慮

図-1 Case3 における解析モナル図

用バネで構造物と連結することで動的相互作用を考慮した骨組連成モデルのケースとした。なお、自由地盤の質量 は、基礎の影響を受けない規模としてフーチング面積の200倍の質量を与え十分大きなものとした。鋼管杭本体は、 事前に実施した保耐照査において降伏に至らないことから線形はり要素とし、杭本体質量の他にフーチング範囲で 囲われた地盤の質量を付加質量として与えている。

また、入力地震波は道示標準の地表面波Ⅱ-Ⅱ-1とするが、基礎~地盤の動的相互作用を考慮する Case2,3 では、固定 P2 橋脚の地盤条件で等価線形化手法に基づく一次元地盤の地震応答解析により作成した引戻し基盤波を用いる。

<u>3. 現況照査結果</u>

入力地震波については、図-2 に示すとおり Case3 における P2 自由地盤地 表面の加速度応答スペクトルが、橋梁の橋軸方向固有周期である 1.0 秒付近 で道示標準波と同等となっていることから、基礎〜地盤系モデル別の地震波 の違いが、照査結果に与えている影響は少ないと考えられる。

P2自由地盤地表面 其態 面 λ 力 波 a 1000 Ì 度応答 スペク 有周 100 速 時日 HÓE 鄔 軭 10 0.1 10.0 固有周期 T (sec) 図-2 地震動の加速度応答スペクトル

キーワード:地震応答解析,耐震性能照査,耐震補強

連絡先:〒343-0851 埼玉県越谷市七左町 5-1 大日本コンサルタント(株)構造事業部 TEL 048-988-8113 FAX 048-988-8134

-97-

各ケースの上部工加速度のスペクトルを図-3に示す。地 盤との動的相互作用の有無の違いである Case1 と Case2 を 比較すると、ほぼ同様な振動特性となっている。基礎~地 盤系をモデル化することで、免震橋の実振動特性を再現し た事例 ¹⁾もあるが、本橋においては明確な振動特性差は見 られなかった。これは、本橋が一点固定といった条件であ ること、そして固定 P2 橋脚が大きく降伏するため地盤の 影響が相対的に低くなったことによるものと考えられる。

一方、Case3 では可動支承の摩擦や衝突を考慮したこと による影響や、それにより固定 P2 橋脚以外の下部工の影 響も含まれることから短周期化する傾向が見られる。

図-4 に示す橋脚の応答曲率分布図を見ると、地盤の非線 形特性や基礎~地盤の動的相互作用を考慮した Case2 にお いては、S-R バネモデルの Case1 よりも応答値が両橋脚と も減少していることが確認できる。

また、Case3 では図-5 に示すとおり可動支承がストッパ ーと衝突しているため、可動支承を有する P1 橋脚の曲げ 応答は増加している。ただし、許容値内であるため耐震性 能は確保されている。固定 P2 橋脚における曲げ応答が Case3 で減少しているのは、可動支承の滑り摩擦や衝突に より地震による慣性力が分散しているためと考えられる。

<u>4.耐震補強試設計結果</u>

Case1 と Case3 について耐震補強設計を行った結果を 図-6に示す。両ケースにおいて桁遊間量を超過しているた め、桁接触が生じないよう摩擦履歴型の制振ダンパーを設 置している。制振ダンパーの抵抗力は、橋台竪壁基部の耐 力に対して安全となるよう決定している。

Case1では上部工の変位を抑えるためにP2橋脚の剛性と 耐力の向上も必要となった。P1 橋脚が現況で降伏しており 慣性力を負担させることができなかったため、制振ダンパ ーと P2 橋脚の RC 巻立て補強+鉄筋定着を併用している。

一方、Case3 では制振ダンパー設置と、橋台部可動支承 の損傷を避けるための上沓改良のみで耐震性能を満足す る結果となった。これは、地盤の非線形特性や構造物との 動的相互作用により下部工における断面力が減少したこ とで、慣性力を P2 橋脚以外の下部工へ負担させることが 可能となったためである。

以上の結果から、実際に起こりうる事象を反映した解析 モデルで地震応答解析を行うことにより、橋梁の耐震補強 規模を縮小できる可能性が確認された。

【参考文献】

1) 吉岡,岡田,石川,佐藤,原田: 2 次元 FEM 地震応答解析による免震橋の地震時実挙動の推定精度,土木学会第 62 回年次学術講演会,2007) 2) 原田, 岡田, 石川, 西, 吉岡: 鋼性支承の破壊によるすべりを考慮した連続けた橋の耐震性能照査, 土木学会第61回年次学術講演会,2006)

-98-

-049