余震の影響を受ける構造物の Damage Index を用いた損傷評価

埼玉大学	学生会員	〇大塚	真悟
埼玉大学	正会員	齊藤	正人
埼玉大学	正会員	川上	英二
鉄道総合技術研究所	正会員	野上	雄太
鉄道総合技術研究所	正会員	室野	剛隆

1. 研究目的

橋梁・高架橋等の構造物の耐震設計では,本震に対 する地震被害を想定して照査するのが一般的である. しかし,本震後の余震には,震度6以上の大きな地震 が発生する可能性があり,地震被害が拡大することが 十分に予想される.そのため,本震により損傷する構 造物の損傷度や安全性を適切に評価しておくことは非 常に重要である.特に目標とする耐震性能の限界まで 見込んで設計された構造物については,こうした評価 は重要と思われる.

一方,構造物の損傷を評価する指標として,最大応 答変位を降伏変位で割った塑性率を損傷の指標として 用いることが多い.しかし,繰り返し損傷を受ける構 造物の中にはエネルギー吸収性能が低下し,最大耐力 に達する前に破壊に至るものもある.そこで,本研究 では塑性率と履歴エネルギーの両方の効果を考慮した Park ら損傷度¹¹を用いて余震による構造物の被害を評 価することにした.

2. 研究方法

本研究で使用する Park らの損傷度 D は以下の式で 定義される:

$$D = \frac{\delta_m}{\delta_u} + \frac{\beta}{Q_v \cdot \delta_u} \int dE \qquad (1)$$

 δ_{m} は地震時の最大応答変位、 δ_{u} は静的載荷時の極限変位(本解析では4と仮定する)、 Q_{y} は降伏震度、Eは履歴吸収エネルギー、 β は定数でその値を0.05とする. D≧1のときに崩壊とする.

本研究では、構造物を1自由度系弾塑性モデルとし て損傷度解析を行った.必要なパラメータは、既設構 造物や現行の耐震基準を踏まえて設定した(固有周期 は0.2~3.0秒,降伏震度は0.1~1.0,減衰定数は0.05).

図-1:総研モデルの耐力低下の考え方

構造物の復元カモデルは Clough モデルを使用した.また RC 部材の繰り返しによる耐力低下を考慮できる総研モデル²⁾ (図-1:鉄道総合研究所で開発) との比較を行った.入力地震動は,新潟県中越地震(2004),新潟県中越沖地震(2007),岩手宮城内陸地震(2008),十勝沖地震(2003)の代表的な観測点における本震及び最大余震の加速度記録(K-net)を用いた.本検討では,本震のみを入力したモデルの損傷度 D₁に対する,本震と余震を連続入力したモデルの損傷度 D₂の増幅を定量的に評価することで,構造物の余震応答特性を検討した.紙面の都合上,ここでは解析結果例として 2004 年新潟県中越地震(NIGO21 +日町)を示す.

3. 考察

復元力特性に Clough モデルを持つ構造物が本震を 受けた際の塑性率(式1第一項のみ)は図-2a,本震と 余震の両方を受けた際は図-2b のようになる.また図 -2c には、本震と余震を受けた場合の塑性率を、本震 のみを受けた場合の塑性率で割った増幅比を表す.こ の図から、0.5sec から1.4sec を固有周期とする構造物 は余震によって損傷を拡大したことが読み取れる.

また図-3は,損傷度D(式1)を表わしている.塑 性率のみを考慮した図-2と比べ,降伏震度,固有周期 のより広い範囲で崩壊する値(D≧1)を示している.

キーワード 余震, Damage Index, 履歴モデル, 履歴吸収エネルギー, 非線形性
連絡先 〒338-8570 さいたま市桜区下大久保 255 埼玉大学大学院理工学研究科 TEL048-858-3560

増幅比の図-3c を見ると,余震を受けることによっ て,塑性率とほぼ同様の周期帯域(0.5secから1.4sec) で損傷度Dが増幅していることがわかる.特に同周期 帯域で降伏震度が低い構造物で増幅が顕著である.ま た,損傷度Dの増分を示す図-3dによれば,短周期 (0.5sec以下)で降伏震度の高い範囲においても,局

所的な損傷度 D の増加を確認することができる.

図-2 と図-3 に生じる差異は,損傷度 D に含まれる履 歴吸収エネルギー項(式1の第二項)の有無に起因す る. そこでエネルギー項について更なる評価を行う. 図-4aと4bには、本震のみと本震+余震を同時に受け る場合のエネルギー項の値をそれぞれ示す.また図-4c と図-4d は、損傷度 D 全体に占めるエネルギー項の割 合を示している.本震のみを受ける構造物に比べて, 本震と余震を受ける構造物は、エネルギー項の損傷度 Dに占める割合が大きく増加することがわかる.特に 短周期(0.5sec 以下)で降伏震度の高い範囲, また周 期1.0sec 近傍で降伏震度の極めて低い範囲では、損傷 度Dにおける履歴吸収エネルギー項の占める割合が約 60%以上にも達していることが確認できる.これは余 震を含めた地震の損傷程度を考える際に、特定の構造 物に対しては、履歴吸収エネルギー項を適切に考慮す る必要があることを示唆している.

また本研究では耐力低下を考慮した総研モデルの 塑性率と Clough モデルの応答比較を行い,上記損傷度 D との整合性について検討した.その結果,総研モデ ルと Clough モデルの塑性率には顕著な差異は確認で きなかった.その理由として,地震発生からすぐに受 けたパルス的な波によって最大応答が決定したため, その後最大応答値を更新しないと指向点を移動させな いという総研モデルの履歴法則から,変形が進行しな かったことが挙げられる.ただし総研モデルでは,定 変位繰り返しによる耐力低下は考慮していないことか ら,仮にこうした繰り返しによる耐力低下を考慮した 場合には,応答に差が生じる可能性がある.

今後,地震動の種類や履歴特性をパラメータに更な る研究を行う予定である.

参考文献

1) Park Y.J., Ang A.H-S., : Mechanistic Seismic Damage Model for Reinforced Concrete, ASCE Journal of Structural Engineering, Vol.111, No.4, April.1985,pp.740-757

2) 野上 雄太, 室野 剛隆, 佐藤 勉: 繰り返しによる耐力低下を考慮した RC 部材の履歴モデルの開発, 鉄道総研報告, Vol.22,No.3,Mar.2008,pp.17-22