2次の変位場を用いた HPM による 3 次元モデルの開発

1. 目的

著者らは、ハイブリッド型の仮想仕事の原理[1]を基礎にペナルティ法の概念を応用したハイブリッド型ペナルティ法(HPM: Hybrid-type Penalty Method)と称する離散化手法を提案した[2].また、HPMでは、それぞれの部分領域において独立に変位場が定義されることから、3次元モデルへの拡張も容易である[3].本研究では2次の変位場へと拡張したHPMによる3次元モデルの数値解析例を紹介する.

2. ハイブリッド型仮想仕事の原理

いま,**図1**に示すように領域 Ω が閉境界 $\Gamma^{(e)} := \partial \Omega^{(e)}$ で 囲まれた*M* 個の部分領域 $\Omega^{(e)} \subset \Omega$ から構成されている ものとする.

図1 部分領域Ω^(e)

$$\Omega = \bigcup_{e=1}^{M} \Omega^{(e)} \not\subset \not\subset \bigcup \Omega^{(r)} \cap \Omega^{(q)} = 0 \quad (r \neq q)$$
 (1)

また, $\overline{\Omega}^{(e)} := \Omega^{(e)} \cup \partial \Omega^{(e)} \mathcal{E} \Omega^{(e)} に境界を加えてできる閉$ 包とする.

図 2 部分領域 $\Omega^{(a)}$ と $\Omega^{(b)}$ の共通の境界 $\Gamma_{\langle ab \rangle}$

ハイブリッド型の仮想仕事の原理では、図2に示す ように、隣接する2つの部分領域 $\Omega^{(a)} \ge \Omega^{(b)}$ の共通の境 界 $\Gamma_{<ab>}$ 、すなわち、

 $\Gamma_{\langle ab \rangle} \stackrel{\text{def.}}{=} \Gamma^{(a)} \cap \Gamma^{(b)}$ (2) において、付帯条件 $\widetilde{u}^{(a)} = \widetilde{u}^{(b)} \quad \text{on} \quad \Gamma_{\langle ab \rangle}$ (3)

を Lagrange の未定乗数 入を用いて,

$$H_{ab} \stackrel{\text{def.}}{=} \delta \int_{\Gamma_{\langle ab \rangle}} \boldsymbol{\lambda} \cdot (\widetilde{\boldsymbol{u}}^{(a)} - \widetilde{\boldsymbol{u}}^{(b)}) \, dS \tag{4}$$

と表し,仮想仕事式に導入する[1]だし, $\tilde{u}^{(a)}$ ならびに $\tilde{u}^{(b)}$ は,それぞれ,部分領域 $\Omega^{(a)}$ と $\Omega^{(b)}$ における境界 $\Gamma_{<ab>}$ 上の変位を表している.

いま,隣接する2つの部分領域境界辺の数をNとすると,ハイブリッド型の仮想仕事式は次のように表すことができる.

$$\sum_{e=1}^{M} \left(\int_{\Omega^{(e)}} \boldsymbol{\sigma} : \operatorname{grad}(\delta \boldsymbol{u}) dV - \int_{\Omega^{(e)}} \boldsymbol{f} \cdot \delta \boldsymbol{u} \, dV \right) - \sum_{s=1}^{N} \left(\delta \int_{\Gamma_{< s>}} \boldsymbol{\lambda} \cdot (\tilde{\boldsymbol{u}}^{(a)} - \tilde{\boldsymbol{u}}^{(b)}) \, dS \right) - \int_{\Gamma_{\sigma}} \hat{\boldsymbol{t}} \cdot \delta \boldsymbol{u} \, dS = 0 \forall \delta \boldsymbol{u} \in \mathbb{V} \quad (5)$$

なお、Lagrange の未定乗数 λ は、次式のように、 $\Gamma_{\langle ab \rangle}$ 上の表面力を意味している[2].

$$\boldsymbol{\lambda} = \boldsymbol{t}^{(a)}(\widetilde{\boldsymbol{u}}^{(a)}) = -\boldsymbol{t}^{(b)}(\widetilde{\boldsymbol{u}}^{(b)})$$
(6)

ここで、 $t^{(a)} \geq t^{(b)}$ は、それぞれ、部分領域 $\Omega^{(a)} \geq \Omega^{(b)}$ における境界 $\Gamma_{<ab>}$ 上の表面力である.

3. 部分領域毎に独立な2次の変位場

3 次元領域のある領域 $\Omega^{(e)}$ に着目し、変位u(x)を点 $x_P = (x_P, y_P, z_P) \in \Omega^{(e)}$ についてテーラー展開し、任意点 での2次の変位場を表すと次のようになる.

$$u = u_0 + X\varepsilon_x + \frac{1}{2}Z\theta_y - \frac{1}{2}Y\theta_z + \frac{1}{2}Y\gamma_{xy} + \frac{1}{2}Z\gamma_{zx} + \frac{1}{2}X^2\varepsilon_{x\cdot x} - \frac{1}{2}Y^2\varepsilon_{y\cdot x} - \frac{1}{2}Z^2\varepsilon_{z\cdot x} + \frac{1}{2}Y^2\gamma_{xy\cdot y} + \frac{1}{2}Z^2\gamma_{zx\cdot z}$$
(7)
$$+ XY\varepsilon_{x\cdot y} + ZX\varepsilon_{x\cdot z} + \frac{1}{2}YZ\gamma_{zx\cdot y} - \frac{1}{2}YZ\gamma_{yz\cdot x} + \frac{1}{2}YZ\gamma_{xy\cdot z}$$

ただし,

$$X = x - x_P, \quad Y = y - y_P, \quad Z = z - z_P$$

 $v, wについても同様である.また, <math>u, v, w, \theta$ は点 xP におけるx, y, z方向変位ならびに剛体回転を表している.式(7)をマトリックス形式で簡単に次のように書く.

$$u = N_{d}d + N_{\varepsilon}\varepsilon + N_{g}\varepsilon_{x}$$
(8)
ここで、それぞれの係数行列を次に示す.

$$d = [u, v, w, \theta_{x}, \theta_{y}, \theta_{z}]^{t}, \quad \varepsilon = [\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}, \gamma_{xy}, \gamma_{yz}, \gamma_{zx}]^{t}$$

キーワード ハイブリッド型ペナルティ法,3次元モデル,2次の変位場

連絡先 〒103-0025 東京都中央区日本橋茅場町 1-2-5 JIP テクノサイエンス(株) 解析技術部 TEL:03-5690-3204

$oldsymbol{arepsilon}_x =$	$[\varepsilon_{x\cdot x},\varepsilon]$	$\varepsilon_{y \cdot x}, \varepsilon_{z}$	$x \cdot x, \gamma_x$	$_{y\cdot x},\gamma_{y}$	$_{yz\cdot x},\gamma_{z}$	$zx \cdot x$	ε_x	y, ε	$\varepsilon_{y \cdot y},$	$\varepsilon_{z \cdot y}$	
	$, \gamma_{xy \cdot y}$	$\gamma_{yz\cdot y},$	$\gamma_{zx \cdot y}$	$, \varepsilon_{x \cdot z},$	$\varepsilon_{y \cdot z}, \varepsilon$	$z \cdot z$,	γ_{xy}	$_{l} \cdot z$,	γ_{yz} .	$_z, \gamma_z$	$x \cdot z \rfloor$
$oldsymbol{N}_{d}^{(e)}=% oldsymbol{D}_{d}^{(e)}oldsymbol{D}_{d}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$0 \\ -\frac{1}{2}Z \\ \frac{1}{2}Y$	$ \frac{\frac{1}{2}Z}{0} \\ -\frac{1}{2}X $	$\begin{bmatrix} -\frac{1}{2}Y\\ \frac{1}{2}X\\ 0 \end{bmatrix}$	$oldsymbol{N}^{(e)}_arepsilon =$	$\begin{bmatrix} X \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ Y \\ 0 \end{array}$	0 0 Z	$\frac{\frac{1}{2}Y}{\frac{1}{2}X}$ 0	$\begin{array}{c} 0\\ \frac{1}{2}Z\\ \frac{1}{2}Y \end{array}$	$\frac{\frac{1}{2}Z}{0}$ $\frac{\frac{1}{2}X}{2}$
$oldsymbol{N}_{g}=\left[egin{array}{c} & & & \ & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \$	$ \begin{array}{cccc} \frac{1}{2}X^2 & - \\ 0 & 2 \\ 0 \end{array} $	$\frac{1}{2}Y^2 - XY$ 0	$\frac{\frac{1}{2}Z^2}{0}$	$ \begin{array}{c} 0 \\ \frac{1}{2}X^2 \\ 0 \end{array} $	$-\frac{1}{2}YZ$ $\frac{1}{2}ZX$ $\frac{1}{2}XY$	$ \begin{array}{c} 0 \\ 0 \\ \frac{1}{2}X^{2} \end{array} $	2				
2	$XY \\ -\frac{1}{2}X^2 \\ 0$	$ \begin{array}{c} 0 \\ \frac{1}{2}Y^2 \\ 0 \end{array} $	$0\\-\frac{1}{2}Z^2\\YZ$	$\frac{1}{2}Y^{2}$ 0 0	$\begin{array}{c} 0 \\ 0 \\ \frac{1}{2}Y^2 \end{array}$	$\frac{\frac{1}{2}YZ}{-\frac{1}{2}Z}$ $\frac{\frac{1}{2}XZ}{\frac{1}{2}XZ}$	Z X Y				
	ZX 0 $-\frac{1}{2}X^{2}$	0 YZ $-\frac{1}{2}Y^{2}$	$\begin{array}{c} 0\\ 0\\ \frac{1}{2}Z^2 \end{array}$	$\frac{\frac{1}{2}YZ}{\frac{1}{2}ZX}$ $-\frac{1}{2}X$	$\begin{array}{ccc} X & 0 \\ X & \frac{1}{2}Z^2 \\ Y & 0 \end{array}$	$\frac{1}{2}2$	$\left[\begin{array}{c} 7^{2} \\ 1 \\ 1 \end{array} \right]$				

このように、本論文で用いる変位場は、領域内にお ける任意点の変位に加え、直接、ひずみとその勾配を 自由度として扱う.また、各領域内の任意点における パラメータを用いて変位場を表しているため、要素頂 点に自由度を設定しない.すなわち、本モデルにおけ る頂点は領域形状を認識するために用いるのであって、 従来の FEM のように頂点は形状関数に支配されない. したがって、要素形状は、特に限定されず、任意の多 面体を部分領域として用いることができる.

4. 数值解析例

曲げが作用する問題として、図3に示すような単純 支持梁の1/4領域を考え、荷重は線分布荷重とし、拘束 は側面に対称条件、支点はヒンジ拘束とした.また、 領域分割数が解に与える影響を検証するため、4×8×1 分割を基本分割数とし、20×40×1分割まで分割数を変 化させた.

梁の軸方向応力(σ_x), 面内せん断応力(T_{zx})コンターを 図4に示し, 要素分割による収束状況および軸応力分 布を図5に示す. 図4に示すように梁に生じる応力分 布はFEMと同様の分布傾向が得られた. 図5に示すよ うにHPMによる解の収束状況はFEMの2%程度精度が 向上する結果が得られた. また, 図6に示す高さ方向 の応力分布についてはFEMとほぼ同程度の精度が得ら れた.

図6 軸応力分布

5. まとめ

本論文では、2次の変位場を用いた HPM による3次 元モデルの離散化手法および解析例を紹介した. HPM は、要素頂点で自由度を設定する必要が無いことから、 3次元モデルであっても要素の細分割化が容易である. 今後は、要素細分割を行なったモデルを用い、既往の 実験との比較検証を行なう予定である.

参考文献

- 1) K.Washizu : Variational Methods in Elasticity and Plasticity, Pergamon, 1975
- 2) 竹内則雄, 草深守人, 武田洋, 佐藤一雄, 川井忠彦: ペナルティを 用いたハイブリッド型モデルによる離散化極限解析, 土木学会構造 工学論文集, Vol.46A, pp.261-270, 2000
- 3) 見原理一, 竹内則雄:1次の変位場を用いた HPM による3次元モ デルの開発, 土木学会第62回年次学術講演会, 2007